我们报道了外加磁场下HfTe 5 的电子输运特征。随着磁场的增加,我们观察到霍尔电阻ρ xy 出现一系列平台期,直至达到1-2 Tesla 的量子极限。在平台期区域,纵向电阻ρ xx 表现出局部最小值。尽管ρ xx 仍然非零,但是在最后几个平台期,其值变得远小于ρ xy。通过测量 Shubonikov-de Haas 振荡来映射费米面,我们发现霍尔平台的强度与费米波长成正比,这表明它的形成可能归因于相互作用驱动的费米面不稳定性导致的能隙打开。通过比较 ZrTe 5 和 HfTe 5 的体能带结构,我们发现在 HfTe 5 的费米能级附近存在一个额外的口袋,这可能导致有限但不为零的纵向电导。
我们表明,剪切的石墨烯双层可以调节以具有扁平的低能带,以供大量的Moir'e超级细胞。在此制度中,相互作用的系统易于发展破碎的对称阶段,而山谷对称性破裂为主要模式。对称性的强信号有利于配对不稳定性的发作,其中库珀对中具有相反自旋投影的电子生活在不同的山谷中。由于排斥的库仑相互作用,费米线变得扭曲了,这使得筛选高度各向异性,从而在某些相互作用通道中很容易引起吸引力。我们还表明,剪切的石墨烯双层提供了实现奇偶校验和山谷象征的综合分解的可能性,使其非常适合研究二维电子系统中的相关性与拓扑之间的相互作用。
摘要:在碳排放目标带来的可再生能源的跳跃发展模式下,在高比例可再生能源电力系统中,大规模的风能和太阳能带来了波动性和不可控制的因素,并且生成网格协调已成为安全和稳定操作的技术问题。能源互联网的概念将互联网技术引入了能源消费应用领域,该技术为整个能源消耗模式提供了一种新的方式,并且是解决高比例可再生能源电力系统安全和稳定操作的有效方法。基于能源互联网技术,本文从规划,操作和机制的三个方面设计了生成网格协调的可持续发展体系结构,这为未来的“两个高级”功率系统的生成网格协调的发展奠定了坚实的基础。
最后,他们进来了,做了所有观察结果,声称我的观察一切都很好,但是随后说我看起来不太好,需要尽快需要医疗护理,但是当我的伴侣在那里,他们说他应该立即将我带到A&E。我试图解释一下我本来会去A&E,但我几乎不能走路,更不用说沿着楼梯走了。他们听了,但仅回答:“我们很抱歉,但救护车仅适用于严重案件。我们了解您在说什么,但是您的观察结果很好,因此我们不能带您进入A&E,您必须采取行动。我确定她可以管理您的车几步。”在最后一个陈述中,我已经被触发了,因为他们似乎不相信我在努力行走但是,由于我有很多与此相似的经历,所以我无意争论我的案子,因此我立即告诉我的伴侣离开他们去,因为他们肯定有更多的“严重”患者可以参加。
成为父母照护者可能会感到孤独和孤立。许多人失去了朋友、关系和工作,无法全身心地承担照护责任。太多的父母照护者感到被评判、被困、得不到支持、被欺骗和绝望。特殊教育需求和残疾父母是父母照护者能结交的最好的朋友。我们牵着彼此的手度过艰难时期,庆祝只有其他特殊教育需求和残疾父母才能理解的快乐。快乐包括您的孩子吃新食物、被接纳、穿上不同的衣服或成功完成学校接送。这些事情对其他父母来说是家常便饭。找到一个理解并愿意提供帮助的专业人士就像中了头奖一样令人高兴。这样的人是存在的,我们需要更多这样的人。我们迫切希望他们的伟大榜样能被其他人看到,这些美好的品质能带来文化变革。
模块 I:电子学简介 [12 小时] 电子设备及其应用、信号、模拟和数字信号、放大器。线性波形整形电路:RC LPF、积分器、RC HPF、微分器。半导体特性、固体分类、硅能带、本征和非本征半导体、半导体电流、霍尔效应、扩散电流、漂移电流、迁移率和电阻率。模块 II:半导体二极管 [12 小时] pn 结理论、V-I 特性、负载线分析、二极管等效电路、二极管电路分析、过渡电容和扩散电容。二极管电路的应用;整流器、限幅器、钳位器。滤波电路、特殊用途二极管:齐纳二极管、LED、光电二极管、隧道二极管、变容二极管、肖克利二极管。激光基础知识。模块 III:BJT 和 FET [12 小时]
摘要:我们进行了广泛的理论和实验研究,以确定短周期 GaN/AlN 超晶格 (SL) 中 GaN 和 AlN 层之间的界面相互扩散对拉曼光谱的影响。通过从头算和随机元等位移模型框架,模拟了具有尖锐界面和不同界面扩散程度的 SL 的拉曼光谱。通过对 PA MBE 和 MOVPE 生长 SL 的理论计算结果与实验数据的比较,表明与 A 1 (LO) 限制声子相关的能带对界面扩散程度非常敏感。结果获得了 A 1 (LO) 限制声子范围内的拉曼光谱与 SL 中界面质量之间的相关性。这为使用拉曼光谱分析短周期 GaN/AlN SL 的结构特征开辟了新的可能性。
在最近的一篇论文中[物理学。修订版d 102,016020(2020)],使用伪量子电动力学来模拟电子之间的库仑相互作用,并确定二维dirac样系统中的质量重新归一化。在本文中,我们通过在分隔两个介电的平面界面以一定距离检查该系统来扩展这些发现。使用随机相近似,我们计算重新归一化组的功能,并显示质量,费米速度的行为和费米恩场的异常维度如何受此界面的存在影响。为了体现我们公式的应用,我们计算了该界面对二维材料中重归于重量化的能带隙的影响。在适当的限制下,我们的结果恢复了上述出版物中报告的相应的结果,以及其他结果。
4 这些作者贡献相同 *通信地址:muhaoran@sslab.org.cn (HM);linshenghuang@sslab.org.cn (SL) 收稿日期:2024 年 9 月 11 日;接受日期:2024 年 12 月 16 日;在线发表日期:2024 年 12 月 23 日;https://doi.org/10.59717/j.xinn-mater.2024.100113 © 2025 作者。这是一篇根据 CC BY 许可开放获取的文章 (https://creativecommons.org/licenses/by/4.0/)。引用:Wang P.、Mu H.、Yun T. 等人 (2025)。1D-2D 横向范德华异质结中的高整流和栅极可调光响应。创新材料 3:100113。自钝化表面和减少的隧穿漏电流使得在范德华 (vdW) 半导体异质结中创建理想的肖特基接触成为可能。然而,同时实现高整流比、低反向漏电流和快速光响应仍然具有挑战性。在这里,我们提出了一种一维 (1D)/二维 (2D) 混合维异质结构光电二极管来解决这些挑战。该结构中显著的价带偏移和最小的电子亲和能差异确保了高整流比和高效的电荷收集。此外,1D 和 2D 材料之间的尺寸差异,其特点是接触面积较小和厚度差异显著,导致低反向漏电流和高电流开关比。此外,它能够实现栅极可调的能带结构转变。我们的器件在室温下表现出 4.7 × 10 7 的出色整流比和 5 × 10 7 的高开关比(V ds = 2 V 和 V g = 30 V)。在 20 V 的栅极电压下,光电二极管实现了 4.9 × 10 14 Jones 的比探测率 (D * )、14 μs 的快速响应时间和接近 1550 nm 的扩展工作波长。混合维度设计和能带工程的战略组合产生了具有出色灵敏度、可重复性和快速响应的 1D-2D pn 异质结光电二极管,凸显了 vdW 半导体在先进光电应用方面的潜力。
BP 在许多领域都具有广泛的应用,如耐腐蚀和耐热涂层 [4,5]、光催化剂和电催化剂 [6,7],以及热管理 [1] 和极紫外光学应用。 [8] 最近,BP 被认为是一种潜在的 p 型透明导电材料 (TCM)。 [9] 这是一个特别有趣的前景,因为在光学透明材料中获得高 p 型电导率仍然是一个尚未解决的挑战。 [10,11] 与其他 p 型 TCM 候选材料不同,多位作者报道了 BP 中的双极掺杂。 [3,5,9,12,13] 因此,BP 可能是具有 p 型和 n 型掺杂能力的透明材料的独特例子。BP 结晶于具有四面体配位的金刚石衍生的闪锌矿结构中。由于B和P之间的电负性差异很小,BP是共价固体,其能带结构与金刚石结构中的Si和C的能带结构非常相似。主要区别在于BP的基本间接带隙大小适中(≈2.0 eV)[14–16],这主要是由于键长适中。虽然该带隙对应于可见光,但BP的直接带隙要宽得多,位于紫外区(≈4.3 eV)。[15–17]预计BP在室温下的间接跃迁很弱[15],这是使BP薄膜足够透明以用于许多TCM应用的关键因素。例如,根据包括电子-声子耦合在内的第一性原理计算,100nm厚的BP膜预计会吸收微不足道的红黄光和不到10%的紫光。 [15] 就电学性质而言,BP 具有由 p 轨道产生的高度分散的价带,从而确保较低的空穴有效质量(0.35 me)。[9] 与金刚石不同,BP 的价带顶位于相对于真空能级相对较浅的能量处。浅而分散的价带通常与高 p 型掺杂性相关,因为更容易形成未补偿的浅受体缺陷。[18,19]