摘要 我们利用核光谱望远镜阵列 ( NuSTAR ) 望远镜测量了 3–20 keV 能量范围内的宇宙 X 射线背景 (CXB) 强度。我们的方法是通过望远镜的侧孔对 NuSTAR 探测器上的 CXB 信号进行空间调制。基于 NuSTAR 对选定河外星系场的观测(总曝光量为 7 Ms),我们估算出 CXB 3–20 keV 通量为 2.8 × 10 − 11 erg s − 1 cm − 2 deg − 2 ,比 HEAO-1 测得的值高 ∼ 8%,与 INTEGRAL 测量值一致。推断出的 3–20 keV 能带内的 CXB 光谱形状与 Gruber 等人的正则模型一致。我们证明了 NuSTAR 测量的空间调制 CXB 信号不受系统噪声污染,并且受光子统计限制。测量到的不同天空方向之间 CXB 强度的相对散射与宇宙方差相一致,这为使用 NuSTAR 研究整个天空的 CXB 各向异性开辟了新的可能性。
在二维反铁磁半导体 CrPS 4 上实现的晶体管表现出大的磁导,这是由于磁场引起的磁状态变化。电导和磁状态耦合的微观机制尚不清楚。我们通过分析决定晶体管行为的参数——载流子迁移率和阈值电压——随温度和磁场的变化来确定它。对于接近尼尔温度 TN 的温度 T ,磁导源于由于施加的磁场导致的迁移率增加,从而降低了自旋涨落引起的无序。当 T << TN 时,变化的是阈值电压,因此在固定栅极电压下增加场会增加积累的电子密度。该现象通过导带边缘偏移来解释,该偏移是通过从头算正确预测的。我们的结果表明,CrPS 4 的能带结构取决于其磁状态,并揭示了一种以前未被发现的磁导机制。
房颤(AF)是最常见的持续性心律失常,也是西方国家最重要的公共卫生问题和健康支出的原因之一(1)。AF患者的中风风险高5倍,死亡风险高2倍,而AF也会对生活质量产生负面影响(1,2)。早期检测对于最大程度地减少并发症至关重要。心电图(ECG)被认为是心律不齐检测的黄金标准,但其应用仅限于临床环境,使同时记录症状发作,具有挑战性(3)。此外,AF通常是无症状的,并且可能仍未发现,直到并发症(例如血栓栓塞事件)发生为止(4)。使用可穿戴设备通过传感器记录重要参数,可以通过提供有关患者在家的心血管状态的数据来实现移动诊断(5-8)。这些解决方案可以进行有效且易于筛查,并通过早期发现异常和适当的治疗干预来减少心血管疾病的并发症(7)。光绘画学的进步(PPG)
碳基纳米结构可以根据其精确的键合结构显示出异常多样的特性。这包括石墨烯纳米带 (GNR),1-3 其中石墨烯晶格被限制为狭窄的一维条纹。具有扶手椅取向边缘的 GNR 显示出半导体带结构。相比之下,锯齿形甚至手性 GNR 是准金属的,并且会形成自旋极化边缘态,2-5 除非它们非常窄。在这种情况下,两侧的边缘态相互杂化,这会猝灭自旋极化并赋予带常规的半导体带结构。6,7 对于具有 (3,1) 手性矢量的带,维持准金属行为所需的最小宽度包括从一侧到另一侧的六条碳锯齿线。6 这一理论预测最近已通过合成和光谱表征 Au(111) 上不同宽度的 (3,1) 手性 GNR 得到实验证实。 8 然而,这些纳米带,就像纯锯齿状边缘的 GNR 9 或具有与周期性锯齿状边缘段相关的低能态的其他 GNR 10–12 一样,迄今为止仅在 Au(111) 上合成和表征。为了研究具有较低功函数的不同基底对纳米带电子特性的影响,我们在弯曲的 Ag 晶体 13 上合成了六条锯齿状线宽的 (3,1) 手性 GNR((3,1,6)-chGNR,图 1a),该晶体相对于中心 (111) 表面取向向两侧跨越高达 ±15 度的邻位角(图 1b)。整个晶体的合成都是成功的,但样品每一侧的不同类型的台阶对纳米带的优选方位角排列有不同的影响。这为我们提供了一个理想的样品,可通过角分辨光电子发射 (ARPES) 研究沿纳米带纵轴和垂直于纳米带纵轴的能带色散。我们使用的反应物是 2',6'-二溴-9,9':10',9”-四蒽 (DBTA,图 1a),合成方法见补充信息。8 它经过
事实证明,最大化能带简并度和最小化声子弛豫时间对于推进热电学是成功的。与单碲化物合金化已被公认为是收敛 PbTe 价带以改善电子性能的有效方法,同时材料的晶格热导率仍有进一步降低的空间。最近有研究表明,声子色散的加宽衡量了声子散射的强度,而晶格位错是通过晶格应变波动实现这种加宽的特别有效的来源。在本研究中,通过精细控制 MnTe 和 EuTe 合金化,由于涉及多个传输带,PbTe 价带边缘附近的电子态密度显著增加,而密集的晶内位错的产生导致声子色散有效加宽,从而缩短声子寿命,这是由于位错的应变波动较大,这已由同步加速器 X 射线衍射证实。电子和热改进的协同作用成功地使平均热电性能系数高于工作温度下 p 型 PbTe 的报道值。
为了阐明 SiNRs/Ag(110) 中 1D 狄拉克带的起源,我们将 SiNRs/Ag(110) 的展开能带结构投影到不同的原子层,如图 S4(a)-S4(d) 所示。可以看出,狄拉克带主要位于表面 Si 层,在最顶层的 Ag 层只有少量的剩余信号。最顶层 Ag 层中的剩余信号表示 Si 和 Ag 之间的有限能带杂化。第 8 个 Ag 层仅包含 Ag(110) 的体能带,如图 S4(c) 所示。通过比较图 S4(a) 和 S4(c),我们还可以得出结论,狄拉克带附近强度较高的能带来自 Ag(110) 的体能带。事实上,由于我们计算中的平板几何形状,这些能带来自 Ag 体 sp2 能带的子能带。为了研究狄拉克能带的轨道组成,我们将展开的能带结构投影到 Si s 和 Si ad 原子的不同轨道上,如图 S4(e)-S4(l) 所示,发现狄拉克能带主要由 Si spz 轨道组成。这些结果与我们的 TB 分析结果一致,即 Si s 和 Si ad 原子的 pz 轨道是解耦的。
i) 具有抛物线能带和有效质量为 m * 的 2D 半导体。(假设谷简并度为 2。)ii) 石墨烯,我们认为 E > 0 为导带。(E = 0 是能带交叉点,即所谓的狄拉克点。)(假设谷简并度为 2。)
基于石墨炔 (GY) 和石墨炔 (GDY) 的单层代表了下一代二维富碳材料,其可调结构和性能超越石墨烯。然而,检测原子级厚度的 GY/GDY 类似物中的能带形成一直具有挑战性,因为该系统必须同时满足长程有序和原子精度。本研究报告了在表面合成的金属化 Ag-GDY 薄片中形成具有介观(≈ 1 μ m)规律性的能带的直接证据。采用扫描隧道和角度分辨光电子光谱,分别观察到费米能级以上实空间电子态的能量相关跃迁和价带的形成。此外,密度泛函理论 (DFT) 计算证实了这些观察结果,并揭示了蜂窝晶格上双重简并的前沿分子轨道产生接近费米能级的平坦、狄拉克和 Kagome 能带。 DFT 建模还表明原始薄片材料具有固有带隙,该带隙保留在具有 h-BN 的双层中,而吸附诱导的带隙内电子态在 Ag-GDY 装饰银的 (111) 面的合成平台上演变。这些结果说明了通过原子精确的二维碳材料中的分子轨道和晶格对称性设计新型能带结构的巨大潜力。
3 哈佛大学物理系,美国马萨诸塞州剑桥 02138 摘要 固体(能带结构)的能量与晶体动量 E(k) 图构成了导航其光学、磁性和传输特性的路线图。通过选择具有特定原子类型、组成和对称性的晶体,可以设计目标能带结构并从而设计所需特性。一个特别有吸引力的结果是设计能带,使其分裂成具有动量相关分裂的自旋分量,正如 Pekar 和 Rashba [Zh. Eksperim. i Teor. Fiz. 47 (1964)] 所设想的那样,从而实现自旋电子应用。本文提供了能带波矢相关自旋分裂 (SS) 的“设计原则”,它与传统的 Dresselhaus 和 Rashba 自旋轨道耦合 (SOC) 诱导分裂平行,但源自根本不同的来源——反铁磁性。我们使用磁对称设计原理确定了一些具有不同 SS 模式的通用 AFM 原型。这些工具还允许识别属于不同原型的具有 SS 的特定 AFM 化合物。通过密度泛函能带结构计算,使用一种特定化合物——中心对称四方 MnF 2——定量说明一种 AFM SS。与仅限于非中心对称晶体的传统 SOC 诱导效应不同,我们表明反铁磁诱导自旋分裂扩大了范围,甚至包括中心对称化合物,并且即使没有 SOC,SS 的量级也与最知名的(“巨大”)SOC 效应相当,因此不依赖于高 SOC 所需的通常不稳定的高原子序数元素。我们设想,使用当前的设计原理来识别具有自旋分裂能带的最佳反铁磁体将有利于有效的自旋电荷转换和自旋轨道扭矩应用,而无需包含重元素的化合物。 _____________________________________________________________________________ 电子邮件:erashba@physics.harvard.edu;alex.zunger@colorado.edu
参数相关的哈密顿矩阵的特征值在参数空间中形成能带结构。在这样的 N 带系统中,由贝里曲率和量子度量张量组成的量子几何张量 (QGT) 通常通过数值获得的能量特征态计算得出。这里,提出了一种基于特征投影器和(广义)布洛赫矢量的 QGT 替代方法。它比特征态方法提供更多的分析见解。具体而言,仅使用哈密顿矩阵和相应的能带能量,即可获得每个能带的完整 QGT,而无需计算特征态。最显著的是,众所周知的以哈密顿矢量表示的贝里曲率双带公式被推广到任意 N 。使用三带和四带多重费米子模型说明了该形式化,尽管具有相同的能带结构,但它们具有非常不同的几何和拓扑性质。从更广泛的角度来看,这项工作中采用的方法可以用于计算任何物理量或研究任何可观测量的量子动力学,而无需明确构建能量本征态。