摘要。在这项工作中,我们通过实验研究了电应力对 T = 2 K 温度下 p 型硅 MOSFET 内单空穴传输特性可调谐性的影响。这是通过监测通道氧化物界面处三个无序量子点的库仑阻塞来实现的,众所周知,由于它们的随机起源,这些量子点缺乏可调谐性。我们的研究结果表明,当施加 -4 V 至 -4.6 V 之间的栅极偏压时,附近的电荷捕获会增强库仑阻塞,从而导致更强的量子点限制,在执行热循环重置后可以恢复到初始设备状态。然后重新施加应力会引起可预测的响应,量子点充电特性会发生可重复的变化,并且会观察到高达 ≈ 50% 的持续充电能量增加。我们在栅极偏压高于 -4.6 V 时达到了阈值,由于大规模陷阱生成导致设备性能下降,性能和稳定性会降低。结果不仅表明应力是增强和重置充电特性的有效技术,而且还提供了有关如何利用标准工业硅器件进行单电荷传输应用的见解。
在正方形晶格上的半填充一轨式哈伯德模型中,我们研究了使用基于基于蒙特利亚的 +蒙特 - 卡洛方法对模拟过程的精确型 - 型号 +基于蒙特 - 卡洛的方法在有限的温度下跳跃对单粒子光谱函数的影响。我们发现,在néel温度t n和相对较高的温度尺度t ∗之间存在的伪ap状倾角,沿高象征性方向以及沿正常状态的福利表面沿孔和颗粒激发能量中有显着的不对称能量。从(π/ 2,π/ 2)沿正常状态费米表面移动到(π,0)时,孔驱引气能量增加,这种行为与在高t c库酸酯的d波状态和伪gap阶段非常相似,而粒子示出能量的行为降低。Quasiparticle峰高度是最大的(π/ 2,π/ 2),而它是靠近的小(π,0)。这些光谱特征在t n之外生存。温度窗口t n t n t≲t ∗随着下一个最新的邻居跳跃的增加而缩小,这表明下一个最新的邻居跳跃可能不支持PseudoGap-like特征。
随着混合型海上园区的发展,以及在不久的将来大规模实施的预期,研究适当的能源管理策略以提高这些园区与电力系统的可集成性变得至关重要。本文讨论了一种多目标能源管理方法,该方法使用由电池和氢/燃料电池系统组成的混合能源存储系统,应用于多源风波和风能-太阳能海上园区,以最大限度地提高输送能量,同时最大限度地减少功率输出的变化。为了找到能源管理优化问题的解决方案,提出了一种策略,该策略基于检查一组加权因子来形成帕累托前沿,同时在混合整数线性规划框架中评估与每个因子相关的问题。随后,应用模糊决策从帕累托前沿中现有的解决方案中选择最终解决方案。研究在不同地点实施,考虑了电力系统限制的情况和存储单元的位置。根据结果,应用所提出的多目标框架成功地解决了混合海上园区在所有电力系统限制和组合存储位置情况下的能量输送和功率输出波动的减少问题。根据结果,除了输送能量增加外,在研究案例中还观察到功率变化减少了约 40% 至 80% 以上。
Q1 1以下哪种存储方法的工作原理类似于燃气轮机发电厂的周期? 选项A:SMES选项B:飞轮选项C:泵送水力发电选项D:压缩空气储能2以下哪项不用作明智的TES系统的存储材料? 选项A:岩石选项B:钢筋混凝土选项C:ICE选件D:矿物油3哪些因素决定了储存在明智的TES系统中的能量量? 选项A:存储材料的体积,温度和比热容量选项B:质量,温度和储存材料的特定热容量选项C:质量,温度变化和存储材料的特定热容量选项D:体积,温度变化和储存材料的特定热容量4如何增加存储在飞轮储能储能技术转子中的能量? 选项A:提高转子选项的角速度B:减少转子选项的质量C:增加转子选项选项的体积D:增加转子5的特定电阻5哪种存储技术涉及在等体相变的材料内部能量增加材料内部能量的形式? 选项A:泵送水力发电储能选项B:明智的热量储能选项C:潜在的热量储能选项D:压缩空气储能6可以通过物质或能量流(热量,热量,工作等)产生的最大工作量(也称为可用性))Q1 1以下哪种存储方法的工作原理类似于燃气轮机发电厂的周期?选项A:SMES选项B:飞轮选项C:泵送水力发电选项D:压缩空气储能2以下哪项不用作明智的TES系统的存储材料?选项A:岩石选项B:钢筋混凝土选项C:ICE选件D:矿物油3哪些因素决定了储存在明智的TES系统中的能量量?选项A:存储材料的体积,温度和比热容量选项B:质量,温度和储存材料的特定热容量选项C:质量,温度变化和存储材料的特定热容量选项D:体积,温度变化和储存材料的特定热容量4如何增加存储在飞轮储能储能技术转子中的能量?选项A:提高转子选项的角速度B:减少转子选项的质量C:增加转子选项选项的体积D:增加转子5的特定电阻5哪种存储技术涉及在等体相变的材料内部能量增加材料内部能量的形式?选项A:泵送水力发电储能选项B:明智的热量储能选项C:潜在的热量储能选项D:压缩空气储能6可以通过物质或能量流(热量,热量,工作等)产生的最大工作量(也称为可用性)涉及参考环境的平衡,定义为 - 选项A:能量选项B:焓选项C:Exergy选项D:Entropy
摘要 含水层热能存储 (ATES) 是一种节能技术,通过在含水层中存储热水和冷水来为建筑物提供供暖和制冷。在对 ATES 需求量大的地区,ATES 的采用导致了含水层的拥堵问题。通过减少相同温度的井之间的距离,可以增加含水层中存储的热能回收量,同时保证单个系统的性能。虽然这种方法在实践中得到了实施,但对其如何影响回收效率和所需的泵送能量的理解仍然缺乏。在本研究中,量化了井位对单个系统性能的影响,并制定了规划和设计指南。结果表明,当将相同温度的井的热区组合在一起时,单个系统的热回收效率会提高,这是因为发生损失的热区表面积减少。发现存储量小且井筛长的系统热回收效率提高幅度最大。对于储存量为 250,000 立方米 / 年的中等规模系统,热采效率相对增加 12%,对于小型系统(50,000 立方米 / 年),热采效率相对增加 25%。根据热采效率增加与泵送能量增加之间的权衡,同温井之间的最佳距离为热半径的 0.5 倍。相反温度的井之间的距离必须大于热半径的三倍,以避免产生负面相互作用。
当今世界的主要关注点之一是减少了建筑物在建筑物中造成的不可再生能量和环境污染,这可以通过节省和优化能源消耗来控制。另一方面,全球气候变化及其本地和区域影响在建筑物能源管理政策中很重要。为此,确定和利用被动系统以及对气候友好的设计策略是这方面廉价且可持续的解决方案之一。本研究研究了土壤热势和地球壳设计的使用作为提供热舒适度并减少炎热和干燥气候中的能源消耗的实用解决方案之一,并研究了“沙赫达沙漠”的案例。目前在全球范围内使用了各种主动和被动技术,以减少能源消耗,其中一些从过去一直到现在,例如在地球庇护所中建造建筑物,例如伊朗本地建筑。这项研究通过经验和实际研究了土壤中建筑物深度对冷却和加热能量消耗速率的影响。通过在沙赫达沙漠进行现场调查获得了地球隔离建筑所需的信息。进一步建议通过在沙赫达的炎热而干燥的气候中避难在卡鲁特人的心脏中,建造一个旅游居住。当建筑物离开地球时,总冷却和加热能量消耗急剧增加。通过将设计的建筑物移动到卡卢特内部,计算了一年中建筑物的冷却和加热能量消耗的速度,结果表明,改变地球隔离建筑的深度对加热能的影响不大,但是随着接近地球边缘,其冷却能量增加。
牲畜胃肠道中肠甲烷的产生被认为是估计喂养系统中能量代谢的方程中的能量损失。因此,应与方程的其他因素重新校准甲烷排放的特定抑制作用所产生的保留能量。,通常假定饲料中的净能量增加,从而有益于产生功能,尤其是由于瘤胃中甲烷的重要产生而导致反刍动物。尽管如此,我们在这项工作中确认反刍动物的排放并不能转化为生产的一致改进。使用实验数据对能量流的理论计算表明,生产的净能量的预期改善很小,很难检测到使用抑制甲烷生成的饲料添加剂获得的甲烷产生(25%)的中等抑制(25%)。重要的是,当抑制甲烷发生时,使用规范模型的能量分配可能不足。缺乏有关各种参数的信息,这些参数在能量分配中起作用,并且在甲烷的挑衅下可能受到影响。在抑制甲烷发生时,应根据呼吸交换计算热量产生的公式。此外,还需要更好地理解抑制对发酵产物,发酵热和微生物生物量的影响。当前,这过多的H 2及其对微生物群和宿主的后果尚不清楚。2023作者。抑制作用诱导H 2的积累,H 2是用于产生甲烷的主要底物,对宿主没有能量值,并且大多数瘤胃微生物并未广泛使用它。当抑制肠甲烷发生时,所有这些其他信息将更好地说明反刍动物的能量交易。基于可用信息,得出的结论是,不保证肠甲烷抑制作用将转化为更多的进食动物。由Elsevier B.V.代表动物财团出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。