背景是磷酸锂(LFP)的普及,与锂镍钴锰氧化物(NCM)相比,其成本效益引起,通过用LFP阴极代替NCM阴极来实现。传统上,LFP的能量密度有限,影响了电动汽车(EV)的驱动范围。文献中的许多文章证实了LFP的缺点,包括2023年《福布斯》杂志的文章,标题为“磷酸锂,将是电动电动电池中的下一件大事”,它指出,与NCM相比,LFP的LFP能量密度降低了30-40%,与NCM相比,LFP天主教徒与NCM的安全优势相比。A link to this article can be found at https://www.forbes.com/sites/samabuelsamid/2023/08/16/lithium- iron-phosphate-set-to-be-the-next-big-thing-in-ev-batteries/?sh=340446717515.
摘要:在过去的十年中,通过便携式电子小工具的快速开发来鼓励能源存储系统的研究。混合离子电容器是一种Nov El电容器 - 电池混合储能设备,由于其高功率数量,同时保持能量密度和较长的生命周期,因此引起了很多兴趣。主要是基于锂的储能技术正在研究用于电网存储。但是,锂储量的价格上涨和间歇性可用性使基于锂的商业化不稳定。因此,已经提出基于钠的技术科学科学作为基于LITH IUM的技术的潜在替代品。钠离子电容器(SICS)是AC知识的,它们是潜在的创新能量存储技术,其具有较低的标准电极电势和比锂离子电容器较低的成本。然而,钠离子的较大半径也有助于不利的反应动力学,低能量密度和短暂的SICS寿命。最近,由于较大的理论能力,环境友好性和SIC的低成本,基于转移的金属氧化物(TMO)候选者被认为是潜力的。这项简要研究总结了TMO和基于钠的TMO的研究作为SIC应用的电极候选物的当前进步。此外,我们详细介绍了SICS TMO的探索和即将到来的前景。关键字:过渡金属氧化物,电极材料,能量密度,功率密度,钠离子电容器。
几十年来。 [1] 目前商业化锂离子电池的能量密度受到层状结构正极材料(如 LiCoO 2 和 LiNixMnyCo1−x−yO2)的限制,由于材料晶格中 Li+ 主位点有限,只能提供小于 220 mAh g−1 的比容量。 [2] 此外,锂离子电池市场的快速扩张导致钴和镍价格飙升(2022 年钴金属价格高达 90 美元/千克)。因此,迫切需要探索高能量密度、低成本的无钴、无镍正极材料。转化型材料通常由 Fe、Cu、O 和 S 等价格较便宜且环境友好的元素组成,其容量比插层型电极材料高得多。 [3] 在各种转化化合物中,过渡金属氟化物(MF x )既提供> 2.0 V 的高氧化还原电位(由于金属氟化物键的高离子性),又提供大容量,因为每单位分子式允许多个电子转移,从而实现相当高的理论能量密度。[4] 转化正极面临的一个主要挑战是循环稳定性。优化的 Fe 基氟化物如 FeF 2 、FeF 3 、FeOF 和 Fe 0.9 Co 0.1 OF 可以稳定地充电/放电几百次循环。[5] 然而,Fe 基正极的能量密度仍然不够高。氟化铜(CuF 2 )比 Fe 基氟化物提供了更高的比能量密度(1874 Wh kg −1 ),因为它对 Li/Li + 的理论电位高达 3.55 V,理论容量为 528 mAh g −1 。[6]
先进锂离子电池和技术的开发通常解决以下四个目标之一:1)创造更高的体积能量密度和/或比能量/功率,2)赋予本质上更安全的化学性质,3)实现更快的充电速度,和4)使用价格较低但性能具有竞争力/接近竞争力的电池。当然,其他因素也会发挥作用,这取决于目标市场类型和全球供应的可用性;然而,为了广泛采用,上述要点/标准仍然很重要。锂离子在商业上已在通信和运输 (EV) 应用行业中根深蒂固。如今,轻微的迭代(主要是电解质定义的)正在逐步提高安全性、成本和循环或日历寿命。最后一点,日历寿命,是能量密度极高的锂离子电池经常被忽视的一点,因为它们在较高电荷(OCV 条件)和高温下具有反应性。虽然循环寿命与容量/能量性能下降之间存在争议,但重新利用电池本身或在电池寿命结束时回收内部化学成分的尝试在该领域已大大增加。希望在回收循环中也能考虑能源中性过程。尽管如此,能源存储领域相当大,这一追求取决于推动该领域朝着许多方向之一迈进,朝着更崇高的目标迈进。因此,下一代电池和技术的追求必须更深入地研究新的和新颖的化学和电化学,以创造一个中性、无碳环境的世界,一个仅靠太阳能和风能等可再生能源就能满足能源需求的世界。因此,电力和化学在我们这个世界中的应用是 21 世纪的杰作。钠离子电池 (SIB) 进入电池领域让我们认识到预知由锂离子衍生的非水 (电) 化学知识的价值,这可以加快研究方向并缩短开发时间。在过去 10 年中,有关 SIB 的出版物数量大幅增长,这确实代表了一种“超越锂离子”的电池系统方法;然而,这种方法的固有能量密度可能较低。接近 250 Wh/kg 或相当于当今市场上最好的锂离子电池的 SIB 能量密度尚未得到证实/发现。然而,与锂离子相比,电池组建模确实表明生产和原材料提取成本更低,以及材料加工所需的能量更低(以成本/kWh 计算)。如果 SIB 的成本低于石墨/LFP (LiFePO 4 ),同时具有相同的能量密度、寿命、性能和安全性,那将会很有趣,而且肯定具有竞争力。在纸面上这很容易陈述,但挑战在于在现场展示这种比较。我们期待继续开发新的 SIB 阴极和阳极材料的相空间,新的电解质、盐和其他 SIB 技术和特性将引起人们对这个快速发展领域的兴趣。
对具有高功率和较大能量密度的电池的需求不断增长,例如锂离子电池(LIBS)[1,2]。但是,由于锂离子电池中传统商业石墨阳极的容量仅为372 mA H g-1 [3],因此至关重要的是,识别具有较高能量密度,功率能力,成本效益,安全性,安全性和稳定性的新的阳极材料对商业能量存储的储存[4,5]。MXENE材料具有潜力,但仍有一些缺点和挑战[6]。与其他负电极材料相比,MXENE具有较低的特定能量,这需要更多的材料提供相同的容量,从而导致电池量较大[7]。在充电和放电周期期间,由于结构降解和固体电解质界面(SEI)膜的不可估力的形成,MXENE的能力逐渐降低[8]。没有什么,Mxene材料也具有许多有利的特性,例如
在2022年,Nanograf Technologies的电池(18650 Li-ion电池电池)分别达到了体积和重力能密度的里程碑,分别为1150 WH/L和450 WH/KG [28]。值得注意的是,锂离子电池的最新版本使用了硅阳极,使能量密度急剧上升。与以前使用的镍和镉的石墨或合金相比,硅的亮度允许重量能密度的上升,而其存储大量能量的能力(石墨仪的近10倍)允许体积能量密度上升。但是,硅具有大大扩展的体积能力,使其容易分解,从而损害了电池的寿命数量。此外,当使用硅阳极时,电导率有风险,因为硅可能与锂形成合金,从而导致破裂,从而降低电导率[29]。
量子电池预计将实现储能容量的显着进步。在经典电池中,每个子系统的能量密度达到其最大值,称为E C,这是通过将最大能量除以子系统数来确定的。我们证明,通过量子能远程(QET)方案,可以超过量子电池中的限制,从而使子系统的能量密度超过了E c的值。我们的协议提高了效率,降低了量子计算机上的实验复杂性,并通过本地操作和经典通信(LOCC)实现瞬时能量充电。利用量子纠缠,该协议显着改善了量子储能系统,量子计算的有希望的进步和新的技术应用。这项工作代表了朝着革命量子储能和转移革命的关键步骤。
材料是大多数可再生能源设备的性能瓶颈:我们如何理解和改进材料瓶颈? • 首先看看哪些材料特性决定了能源设备 • 我们如何提高电池中存储的能量(即能量密度)和倍率性能(即功率密度)? • 首先必须合成新型材料:热力学稳定性!
li-ion电池正达到其范围和成本范围,这是由于范围更大所需的额外重量,导致车辆效率较低,较重。使用锂阳极的下一代SSB提供更轻,较小的包装,提高范围更长的能量密度,更快的充电和减少降解。阶乘能源声称其准固体状态电池将固态电解质的安全性与增强性能和生产能力合并,与当前的锂离子电池相比,EV范围可能会延长高达50%,并使电池重量降低了200磅。固态电池的集成需要与设备制造商进行定制机械和OEM的密切合作,以克服广泛的开发过程和严格的法规。说,虽然今天的锂离子电池受益于硅阳极,但未来是用锂金属的固态电池。汽车制造商正在推动具有较高镍和较低钴含量的较高能量密度的限制,但他们撞到了墙壁,尤其是当锂离子电池达到理论上的限制时,安全就成为一个问题。人工智能(AI)和机器学习正在采用以更好的快速充电。过去降低电池成本的努力依赖于规模经济,但是超过40-60 gwh的工厂,收益减少,基础设施负担增加。这是SSB进入的地方,打破了天花板,以达到更高的能量密度和较低的成本,并有望使EVS更轻,更高效。