人们对非工业化环境中的大脑老化或痴呆症知之甚少,这些环境与人类在整个进化历史中的生活环境相似。本文研究了两个南美洲土著人群 Tsimane 和 Moseten 在中老年时期的大脑体积 (BV),他们的生活方式和环境与高收入国家不同。我们以 1,165 名年龄在 40 至 94 岁之间的个体为样本,分析了 BV 随年龄下降的横截面率的人口差异。我们还评估了 BV 与能量生物标志物和动脉疾病的关系,并将其与工业化背景下的发现进行比较。这些分析测试了三种源自大脑健康进化模型的假设,我们称之为富人的尴尬 (EOR)。该模型假设,在身体活跃、食物有限的过去,食物能量与晚年 BV 呈正相关,但现在在工业化社会中老年时期,体重过重和肥胖与 BV 降低有关。我们发现 BV 与非高密度脂蛋白胆固醇和体重指数的关系呈曲线关系,从最低值到高于平均值 1.4 到 1.6 个 SD 为正,从该值到最高值为负。与 Tsimane 相比,文化适应程度更高的 Moseten 人随着年龄的增长 BV 下降幅度更大,但仍低于美国和欧洲人群。最后,主动脉硬化与较低的 BV 有关。结合美国和欧洲的研究结果,我们的结果与 EOR 模型一致,对改善大脑健康的干预措施具有启示意义。
对非工业化环境中的脑衰老或痴呆症知之甚少,这些环境与人类在整个进化史中的生活相似。本文研究了两个南美土著人口Tsimane和Moseten的中年和老年大脑体积(BV),其生活方式和环境与高收入国家的生活方式和环境不同。有1,165个年龄在40至94岁的人的样本,我们分析了BV随年龄的BV下降率的人口差异。我们还评估了BV与能量生物标志物和动脉疾病的关系,并将其与工业化环境中的发现进行比较。分析测试从大脑健康的进化模型得出的三个假设,我们称之为财富的尴尬(EOR)。该模型假设食物能量与后期,食物限制的过去与后期的BV呈正相关,但是现在和年龄段的工业社会中的BV降低了体重和肥胖。我们发现,BV与非HDL胆固醇和体重指数的关系是曲线的,从最低值到平均值高于1.4至1.6 SD,而从该值到最高值。培养的Moseten随着年龄的年龄的增长而比Tsimane表现出更大的降低,但仍然比我们和欧洲人口浅。最后,主动脉粥样硬化与较低的BV有关。与美国和欧洲的发现相辅相成,我们的结果与EOR模型一致,对改善大脑健康的干预措施的影响。
摘要。地表能量平衡是影响地面热状况的关键因素。随着气候变化,了解地表和地下各层中各个热通量的相互作用及其对多年冻土热状况的相对影响至关重要。分析了一组独特的高海拔气象测量数据,以确定瑞士阿尔卑斯山三个山地多年冻土站点(Murtèl–Corvatsch、Schilthorn 和 Stockhorn)的能量平衡,这些站点自 1990 年代末以来一直在瑞士多年冻土监测网络 (PERMOS) 框架内收集数据。所有站点都配备了四分量辐射、空气温度、湿度、风速和风向以及地面温度和积雪高度的传感器。这三个站点的表面和地面物质成分以及地面冰含量差异很大。能量通量是根据二十年的实地测量计算得出的。虽然辐射收支和地面热通量的确定相对简单(通过钻孔内的四分量辐射传感器和热敏电阻测量),但湍流显热和潜热通量的确定存在较大的不确定性。我们的结果表明,Murtèl–Corvatsch(1997–2018 年,海拔 2600 米)的平均气温为 −1.66 ◦ C,在测量期间上升了约 0.8 ◦ C。在 Schilthorn 站点(1999–2018 年,海拔 2900 米),测得的平均气温为 −2.60 ◦ C,平均上升了 1.0 ◦ C。Stockhorn 站点(2003–2018 年,海拔 3400 米)记录到的气温较低,平均为 −6 ◦ C。 18 ◦ C 并增加了 0.5 ◦ C。测量到的净辐射作为地表最重要的能量输入,显示出显著的差异,Murtèl–Corvatsch 的平均值为 30.59 W m − 2,Schilthorn 的平均值为 32.40 W m − 2,Stockhorn 的平均值为 6.91 W m − 2。使用鲍文比方法计算的湍流通量显示所有站点的值约为 7 到 13 W m − 2,使用总体方法计算的湍流通量显示所有站点的值约为 3 到 15 W m − 2。在融化积雪所用的能量方面观察到了很大的差异:在 Schilthorn 计算出的值为 8.46 W m − 2,在 Murtèl–Corvatsch 为 4.17 W m − 2,在 Stockhorn 为 2.26 W m − 2,反映了三个站点积雪高度的差异。总体而言,我们发现不同地点的能量通量存在相当大的差异。这些差异有助于解释和阐释大气变暖的原因。我们认识到净辐射和地面热通量之间存在很强的关系。我们的研究结果进一步证明了长期监测的重要性,以便更好地了解地表能量平衡成分的变化对永久冻土热状况的影响。所提供的数据集可用于改进永久冻土建模研究,例如,提高对永久冻土融化过程的了解。此处显示和描述的数据可在以下网站下载:https://doi.org/10.13093/permos-meteo-2021-01 (Hoelzle et al., 2021)。
抽象冰川和雪融化是溪流的主要水源,以及喜马拉雅西部上印度河上游地区的河流。然而,该冰川盆地的径流幅度预计随着流域的可用能量而变化。在这里,我们使用基于物理的能量平衡模型来估计Chandra盆地上部冰川的表面能量和表面质量平衡(SMB),从2015年到2022年。观察到强烈的季节性,净辐射是夏季的主要能量通量,而在冬季则以潜在而明智的热通量为主导。估计的Chandra盆地冰川上部的平均年度SMB为-0.51±0.28 m W.E.a -1,从2015年到2022年的7年中的累积SMB为-3.54 mW.E。我们发现,冰川的方面,坡度,大小和升高等地理因素有助于研究区域内SMB的空间变异性。发现,需要增加42%的降水量来抵消Chandra盆地上部冰川的空气温度升高而导致的额外质量损失。
摘要:负能量平衡是指估计的能量需求不足。围产期能量需求增加和干物质摄入量减少导致奶牛进入负能量平衡状态。这是奶牛在过渡期(即产犊前三周和产犊后三周左右)常见的问题。奶牛对与血糖和胰岛素浓度降低有关的负能量平衡的反应是增加体内能量储备(主要是糖原、脂肪和蛋白质)的动员以补偿其能量需求。脂肪动员增加(脂肪分解)导致血液中非酯化脂肪酸升高。在肝脏中,这些非酯化脂肪酸重新酯化为三酰甘油或被氧化形成能量体或酮体。虽然这些变化是高产奶牛的正常适应过程,但当奶牛无法适应这种代谢挑战时,就会发生多种代谢和感染性疾病,并影响过渡期后的生产和繁殖效率。所有这些挑战的综合影响是生育能力和产奶量下降,导致过渡期后的利润减少。为了评估能量平衡,我们可以估计血清中的葡萄糖和非酯化脂肪酸浓度。静脉注射 50% 葡萄糖溶液,必须重复 2-4 天,可用于治疗负能量平衡。为了进行适当的管理,应始终正确配制饮食以满足高水平产奶的能量和蛋白质需求。还应注意舒适的围栏或牛棚设计、提供足够的干燥垫料和良好的立足点。因此,本研讨会论文的目的是回顾负能量平衡对过渡期奶牛的影响,并提出一些管理方案以减少影响。[Kebadu Endeg 和 Negesse Welde。过渡期奶牛负能量平衡综述及管理方案。J Am Sci 2021;17(2):1-11]。ISSN 1545-1003(印刷版); ISSN 2375-7264(在线)。http://www.jofamericanscience.org 。1. doi: 10.7537/marsjas170221.01 。关键词:奶牛,干物质摄入量,负能量平衡,非酯化脂肪酸,过渡期 1. 简介
3 此关系可从单方程能量平衡模型中推导出来。在离散时间中,能量平衡模型为 Δ T t = - λT t -1 + bRF t ,其中 T t 为温度,RF t 为辐射强迫,t 以年为单位,b 为单位调整。这可解得 T t = b (1 – (1- λ )L) -1 RF t = ( b /λ) F t + c *(L)Δ RF t ,其中 c *(L) 是 Beveridge-Nelson 分解的可求和残差滞后多项式。如果 RF t 可以很好地近似为 1 阶积分,则此质量平衡方程意味着 T t 和 RF t 是 (1,1) 阶协整的,协整系数为 b / λ 。如果 RF t 是持续性的但不一定是 1 阶协整的,那么 T t 将继承 RF t 的持续性,并与 RF t 共享共同的长期趋势。在这里,我们遵循 Kaufmann、Kauppi 和 Stock (2006) 的观点,采用 1 阶协整模型。有关此处概述的能量平衡模型推导的更多信息,请参阅 Kaufmann 等人 (2013) 和 Pretis (2019)。
关键点1。蛋白质需要人体的生长,维护和修复。2。蛋白质由氨基酸单位建立。3。脂肪可以分类为饱和和不饱和的。4。饱和脂肪被认为对健康有害,因为它们会升高胆固醇水平。5。碳水化合物为人体提供能量。6。我们的大部分能量应该来自复杂的淀粉食品。7。维生素是微量营养素,少量需要在体内从事必不可少的工作。8。水溶性维生素在制备和烹饪过程中很容易破坏。9。水占身体的三分之二,因此定期喝水以保持水分至关重要。10。营养需求在整个生命中都会发生变化,但是每个人都需要在计划餐时考虑当前的健康饮食准则。11。能量平衡是与通过体育锻炼燃烧的能量相比,通过饮食和饮用消耗的能量平衡。
摘要:有效的信号转导对于维持跨组织神经系统的功能很重要。完整的神经传递过程可以通过神经元和外围器官之间的适当交流来调节能量平衡。这确保在大脑中激活右神经回路以调节细胞能量稳态和全身代谢功能。神经递质分泌的改变会导致食欲不平,葡萄糖代谢,睡眠和热创世纪。不体调节也与神经传递的破坏有关,并可能触发2型糖尿病(T2D)和肥胖症的发作。在这篇综述中,我们强调了神经递质在调节系统水平和中枢神经系统中的能量平衡方面的各种作用。我们还解决了神经传递失衡与T2D的发展以及神经科学和代谢研究领域的观点之间的联系。