添加剂制造(AM)研究已经大幅增长,其应用程序从医疗部门到汽车不等。,由于其温度升高,因此对航空航天部门引起了极大的兴趣。组件是使用两个最常见的金属AM工艺制造的,激光粉末床融合(L-PBF)和激光定向能量沉积(L-DED)。比较了两个过程之间的微观结构和机械性能并对比,表明尽管这些过程从根本上是基于相同的物理现象,但过程之间的规模差异使它们无法直接可比。因此,必须在特定的应用程序和过程中执行合金设计和处理窗口开发。
随着使用计算和数据密集型方法探索多主元合金 (MPEA) 的努力不断增加,预测材料特性的实验实现和验证需要对这些合金进行高通量和组合合成。虽然增材制造 (AM) 已成为解决这些挑战和通过零件制造进行快速原型设计的主要途径,但开发和理解工艺-结构-性能相关性的广泛研究迫在眉睫。特别是,基于定向能量沉积 (DED) 的 MPEA AM 前景广阔,因为功能分级组件制造以及表面熔覆的成分变化可能无限。我们分析了 MPEA 的 DED 的最新努力、各种过渡和难熔元素的激光金属沉积过程中的微观结构演变,并评估了各种加工参数对材料相和性能的影响。我们的努力表明,开发用于工艺参数选择的稳健预测方法和修改合成机制对于使 DED 平台能够重复生产无缺陷、稳定和设计 MPEA 至关重要。
节省时间和更快的综合企业可用性,这尤其是当今对快速市场推出的需求。与带有粉末床的添加过程不同,例如激光粉末床融合,可用于生产高度构图的几何形状,基于粉末喷嘴的基于粉末喷嘴的进程,例如激光定向能量沉积(DED-L),也称为激光金属沉积(LMD),可构成组合模型和构建率和构建率和高构建率和乘积和乘积和乘积和乘积。Ti - 6AL - 4V等钛合金在工业应用中广泛使用。由于其出色的机械函数,低密度以及出色的耐腐蚀性和生物相容性,因此它们在医疗和牙科应用中或飞机扇区中的金属组件中使用,例如在高温下在涡轮机工作中的压缩机叶片中应用。[2 - 4]取决于制造过程的条件以及最终的后热机械治疗的特征,Ti - 6AL - 4V可以具有不同的微结构特征,这显着影响其性质。[2]两个阶段α和β的先验β晶粒的形态和排列是这些特征的例子。deD-l分量的微结构主要是通过具有柱状形状的先验β晶粒来表征的。[4,5]常规钛合金中的两个极端排列的极端情况是层状微结构和e词微结构。两种类型的微观结构都可以具有两个阶段的细节和粗整体。[2,6]相位的大小(纤维或粗糙)及其排列(层层或等词)会影响机械性能。这些依赖性已被广泛研究,例如,关于强度,螺旋,蠕变和疲劳行为的已知。
摘要:本研究提出了一种混合方法,以生成用于未来的机器学习应用程序的样本数据,用于使用GMAW工艺预测定向能量沉积 - ARC(DED-ARC)中的机械性能。DED-ARC是一个增材制造过程,由于其高沉积速率高达8 kg/h,它提供了一种具有成本效益的生成3D金属零件的方式。由填充材料G4SI1(ER70 S-6)制成的添加性生产的壁结构以T 8/5冷却时间的依赖性显示。数值模拟用于将过程参数和几何特征与特定T 8/5冷却时间联系起来。具有平均焊接功率,焊接速度和几何特征(例如壁厚,层高度和热源尺寸)的输入,可以在模拟焊接过程中计算每种迭代的特定温度场。这种新颖的方法允许通过结合实验结果来生成基于实验测量的T 8/5冷却时间来生成回归方程,从而生成大型的人工数据集作为机器学习方法的训练数据。因此,使用回归方程与数值计算的t 8/5冷却时间结合使用,在这项研究中可以准确预测机械性能,仅误差仅为2.6%。因此,一小部分实验生成的数据集允许实现回归方程,从而可以精确地预测机械性能。此外,经过验证的数值焊接模拟模型适合于实现T 8/5冷却时间的准确计算,误差仅为0.3%。
摘要:本研究调查了原料丝(此处称为热丝)的电阻预热对双相不锈钢激光定向能量沉积稳定性的影响。沉积过程中在线获取的数据以及金相研究揭示了工艺特性及其稳定性窗口。在线数据(例如预热电路中的电信号和从工艺交互区侧视捕获的图像)提供了有关熔融丝和熔池之间金属转移的见解。结果表明,工艺特性(如激光丝和丝熔池相互作用)随丝预热水平而变化。此外,应用两个独立的能源(激光束和电能)可以微调热输入并增加穿透深度,而对焊珠的高度和宽度影响很小。这可以提高工艺稳定性并消除未熔合缺陷。在热丝电路中测量的电信号指示工艺稳定性,因此电阻预热可用于工艺监控。结论是电阻预热为控制激光导向能量沉积的稳定性和热输入提供了额外的手段。
基于参考文献:•Gradl,P。,Brandsmeier,W.,Calvert,M。等,“添加剂制造概述:推进应用程序,设计和经验教训。 演示,” M17-6434。 12月1日(2017年)。 •ASTM委员会F42关于添加剂制造技术。 添加剂制造技术的标准术语ASTM标准:F2792-12A。 (2012)。 •Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。 液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。 在2018年联合推进会议上(第4625页)。 •Ek,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。基于参考文献:•Gradl,P。,Brandsmeier,W.,Calvert,M。等,“添加剂制造概述:推进应用程序,设计和经验教训。演示,” M17-6434。12月1日(2017年)。•ASTM委员会F42关于添加剂制造技术。添加剂制造技术的标准术语ASTM标准:F2792-12A。(2012)。•Gradl,P.R.,Greene,S.E.,Protz,C.,Bullard,B.,Buzzell,J.,Garcia,C.,Wood,J.,Osborne,R.,Hulka,J。和Cooper,K.G.,2018。液体火箭发动机燃烧设备的添加剂制造:过程开发和热火测试结果的摘要。在2018年联合推进会议上(第4625页)。•Ek,K。,“添加剂制成的金属”,科学硕士论文,KTH皇家理工学院(2014年)。
摘要 超新星的反馈通常被认为是限制恒星形成、从星系中移除气体的重要过程,因此也是星系形成的决定性过程。在这里,我们报告了数值模拟,研究了超新星爆炸与新生分子云之间的相互作用。我们还考虑了有和没有来自大质量恒星的先前反馈(以电离辐射和恒星风的形式)的情况。超新星能够找到云中的弱点并创建可以逃逸的通道,从而使大部分受到良好保护的云基本不受影响。当通道由于先前恒星反馈的影响而预先存在时,这种影响会增强。膨胀的超新星将其能量沉积在这些暴露通道中的气体中,因此当反馈已经发生时,扫过的质量更少,从而导致流出速度更快,辐射损失更少。超新星爆炸的全部影响随后能够影响其所在星系的更大尺度。我们得出结论,超新星爆炸对其致密的诞生环境仅产生中等影响,但是在先前存在的反馈作用下,超新星的能量效应能够逃逸并影响星系中更广泛尺度的介质。
定向能量沉积 (DED) 工艺的有限元模型可预测高速钢长方体样品制造过程中的热历史。模拟结果验证依赖于测量数据和预测数据之间的比较,例如基体内部的温度历史和最后一层涂层的熔池深度。这些 DED 模拟集成在优化循环中,可确定两个可变激光功率函数,它们能够产生恒定的熔池大小。这些函数有望在各层上提供均匀的微观结构。计算出的热场和由三个 AISI M4 实验产生的微观结构是相互关联的,这些实验是在恒定激光功率情况下进行的,两个优化函数位于沉积物内不同深度的三个关注点处。观察到熔体过热温度和热循环历史对微观和纳米硬度测量的影响。因此,优化的激光功率函数为样品提供了比恒定激光功率函数更均匀的微观硬度,但是,整个沉积的 M4 钢层的纳米硬度图并未完全证实微观结构的均匀性。
一般权利 一般权利 PEARL 中的所有内容均受版权法保护。作者手稿根据出版商政策提供。请使用项目记录或文档中提供的详细信息仅引用已发布的版本。在没有开放许可证(例如知识共享)的情况下,应从出版商或作者处获得进一步重复使用内容的许可。 删除政策 删除政策 如果您认为此文档侵犯了版权,请联系图书馆提供详细信息,我们将立即删除对该作品的访问权限并调查您的索赔。 关注此作品和其他作品:https://pearl.plymouth.ac.uk/secam-research
定向能量沉积 (DED) 描述了一类增材制造 (AM) 工艺,其中聚焦热能用于在沉积材料时熔化材料,这在指南 F3187 中有详细描述,并提供了除既定工艺之外的额外制造选项。DED 有可能减少制造时间和成本,并提高零件功能性。通常,DED 用于处理金属原料以执行以下任务之一:制造净形状和近净形状零件、在常规加工的零件上制造特征、进行表面改性(包覆)以防止磨损和腐蚀,或通过向破损或磨损的零件添加金属来修复金属零件。DED 工艺根据几个维度而有所不同,包括原料类型(线材或粉末)、能量源(激光、电子束、电弧、等离子)、能量源数量和机器架构。一些实施方案包括减材工艺,以将零件和特征加工成最终尺寸。一些实施方案利用一个或多个实时传感器来监控各种性能指标,例如熔池温度或尺寸。从业者了解传统的、长期存在的制造工艺(例如切割、连接和成型工艺,例如通过机械加工、焊接或铸造)的优势和劣势,并在设计阶段和选择制造工艺时给予适当的考虑。就 DED 和 AM 而言,设计和制造工程师的经验通常有限。没有与传统工艺相关的限制,DED 的使用为设计师和制造商提供了高度的自由度,这需要了解该工艺的可能性和局限性。本设计指南通过提供有关 DED 零件和特征的典型特征的信息、对这些特征基于工艺的原因的见解以及对工艺能力和局限性的理解,为不同的 DED 技术提供指导。这些信息和理解应该为设计师提供指导,他们可以利用这些指导来利用 DED 功能、绕过限制进行设计并避免工艺缺点。本文件扩展了 ISO/ASTM 52910(通用设计指南),并补充了金属和聚合物材料的粉末床熔合设计指南(ISO/ASTM 52911-1 和 -2),以及正在开发的其他工艺特定设计指南。此外,它专门针对 F3187 指南中的通用 DED 描述并以此为基础。