增材制造 (AM) 的发展日新月异,取代了传统的制造方法。此外,人工智能和机器学习的应用也不断增加,以进一步应用和发展。本综述广泛跟踪了定向能量沉积 (DED) 工艺的所有研究工作和当代进展迹象。还详细分析了该工艺中使用的所有类型的 DED 系统、进料、能源和保护气体。已经严格审查了在 DED 工艺中实施人工智能 (AI) 以减少工艺对人的依赖并控制复杂方面的方法。各种 AI 技术(如神经网络、梯度增强决策树、支持向量机和高斯过程技术)都可以实现预期目标。在 DED 工艺中实施的这些模型已经过训练,可用于高精度产品和卓越质量监控。
图2为直接能量沉积过程中单通道单层熔覆层的外观图及相应时刻的熔池XZ截面和YZ截面图(红色虚线框内为XZ截面,黑色虚线框内为YZ截面)。从图2(a)可以看出,t=0.13时基体处于预热状态,这是为了保证粉末颗粒在熔池中初步完全熔化。由图可知,热源作用于基体时,基体受热比较均匀,热影响区具有很高的对称性,说明高斯热源在数值模型中具有良好的效果。随着金属粉末颗粒进入熔池,熔覆层逐渐形成,熔池最高温度可达3000K左右,如图2(b)所示。
在汽车和机器人中使用的轴承辊的小型化将需要一个制造系统,该制造系统结合了一种可以在没有缺陷的情况下制造薄夹具和一种可以检测此类夹具裂纹的薄夹具的薄夹具。在这里,我们正在开发一个系统,该系统使用定向能量沉积(DED),该系统是3D打印(添加剂制造,AM)工艺来制造薄夹具,然后使用激光超声(LU)检查夹具。在这里,使用DED制造了具有0.4©0.6 mm 2横截面的沉积层,然后使用LU进行了非破坏性检查。然而,在如此小的面积上使用lu存在三个问题:激发和检测激光束的重叠的影响,在分离由于同时产生而分离多种波浪的困难,以及声学范围的复杂性。因此,首先,使用有限元方法(FEM)检查了声学场,然后使用复杂的离散小波变换来检查沉积层的小面积。结果表明,成功地检测了自发发生的裂纹,从而确定了LU对薄夹具的非破坏性检查的效果。[doi:10.2320 / matertrans.mt-m2020086] < / div>
摘要:叠加磁场影响增材制造金属部件的微观结构和力学性能。本文采用 0.2 T 静态磁场下的定向能量沉积技术制备了 Inconel 718 高温合金样品。提出了磁流体动力学一维模型来估算熔池内的流体流动。根据理论预测,施加磁场会使流体流量略有减少。结果表明,糊状区内估计的热电磁对流对亚晶粒尺寸的变化影响可以忽略不计,但足以减少难以溶解的富 Nb 相,从而将平均极限伸长率从 23% 提高到 27%。所得结果证实,外部静态磁场可以改变和提高增材制造材料的力学性能。
催化,4,5酶固定6,7等。MOF的适当性高度依赖于固有的网络拓扑,而金属节点的配置几何形状和组件有机配体的形状又强烈地占据了强烈的影响。8,9这些引人入胜的MOF网络拓扑是使用多种理性方法设计和构建的,其中10-12种采用超分子构建块(SBB)的策略是最受欢迎的策略;在这里,金属 - 有机多面体用作组成块,以组装具有较大空腔和高连接网络拓扑的MOF。13,14超植物(ST),15 - 17,它是传统无机沸石的Sio 4和Alo 4四面体建筑单元,是MOF合成中广泛使用的SBB。两个最广泛研究的介孔MOF(MIL-100和MIL-101)具有相同的MTN沸石拓扑,这是由角落共享的STS产生的,其顶点被铬圆形剂占据。15,16已知MOF中金属三聚体的存在可容纳单个或多种金属离子,具有出色的催化性能以及出色的气体吸附和分离能力。18 - 21报告的众多Zeolitic网络拓扑中,由于STS的增强基于金属三聚体,即MTN 15,16,22和B- Cristobalite网络,只有两种类型可以归类为Zeolitic MoF。17,23,24这可能是由于缺乏单晶X射线
摘要。定向能量沉积增材制造 (DED-AM) 是目前正在探索的主要 AM 技术之一,用于修复航空航天工业中的高价值部件以及大型金属部件的自由成型制造。然而,由于缺乏对底层工艺-结构-性能关系的基本了解,阻碍了 DED-AM 用于生产或修复安全关键部件。本研究使用原位和操作同步加速器 X 射线成像来提供对激光-物质相互作用及其对熔池几何形状影响的更好基本理解。结合过程建模,这些独特的观察说明了工艺参数如何影响 DED-AM 熔池几何形状。校准后的模拟可用于指导工业增材制造工艺的微观结构和质量控制。
这项技术可以小批量生产个性化部件 [2]。这些部件可以打印成各种复杂的形状,而后期加工很少 [3]。单个产品的成本大大降低,工艺生产率也提高了 [2,4]。在电弧增材制造 (WAAM) 中,电弧焊工艺用于制造部件 [5]。电弧加热金属丝,熔融金属沉积在基材上 [5,6]。热填充金属在基材上的沉积会导致基材温度升高。与剩余较冷区域相比,基材在热影响区域的热膨胀会导致其机械性能发生变化。这会导致基材内形成残余应力 [7],并导致基材变形和尺寸不稳定 [6]。过去,不同的作者描述了
在使用钛合金粉末时,在定向能量沉积(DED)添加剂制造,粉末聚集和烧结时可能会发生在熔体池之外。使用原位同步子射线照相术,我们研究了池周围发生Ti6242粉末的烧结的机制,进行了一项参数研究,以确定激光功率和阶段遍历速度对烧结速度的影响。结果表明,尽管后者也降低了沉积层的厚度,但可以使用高激光功率或增加阶段横向速度来减少有害的烧结。DED期间烧结的机理被确定为激光束中粉末颗粒的飞行加热。在本研究中探索的加工条件下颗粒加热的计算证实,粉末颗粒可以合理地超过700℃,即Ti表面氧化物溶解的阈值,因此如果未掺入熔体池,则粉末容易烧结。沉积表面上烧结粉末层的堆积导致缺乏融合孔。为了减轻烧结的形成及其对DED组件质量的有害影响,至关重要的是,粉末输送点面积小于熔体池,以确保大多数粉末土地在熔体池中。
光纤可用作应变和温度传感器,在结构健康监测中引起了广泛关注,尤其是在大型土木工程和基础设施应用中 [1, 2, 3]。最近,人们对将光纤用于嵌入式传感应用产生了兴趣,用于小型金属零件在工程应用中监测应变和/或温度分布。增材制造工艺非常适合嵌入光纤,因为它们可以在光纤周围或上方沉积材料。因此,光纤传感器可以放置在零件内部,从而获得更详细的应变和温度信息。此外,通过使用光频域反射法 (OFDR),一种能够确定沿光纤长度分布应变测量值的传感技术,可以通过嵌入在零件中的光纤传感器连续确定应变分布和集中度。
1.1.2 冲压喷气发动机...................................................................................................................... 8