摘要 250 ℃低温时效处理可显著提高电子束定向能量沉积 (EB-DED) 制备的 NiTi 合金的拉伸超弹性能。然而由于晶粒尺寸较大,需要很长的时效时间 (长达 200 h) 才能获得优异的拉伸超弹性能。为了加速时效进程,在时效处理之前通过人工热循环处理引入高密度位错(EB-DED 处理的 NiTi 合金中原始位错含量很低),这将促使后续在低温时效处理过程中均匀析出纳米级 Ni 4 Ti 3 颗粒。其相变行为始终保持稳定的两阶段马氏体相变。在 6% 应变循环拉伸试验下,经过热循环处理后,24 h 时效试样经过 10 次循环后的回复率仍在 90% 以上,与未进行热循环处理时效 200 h 的试样性能相当,时效效率大幅提高。
摘要:定向能量沉积 (DED) 是金属增材制造 (AM) 中的关键工艺,具有创建功能梯度材料 (FGM) 的独特能力。FGM 凭借其性能优化、减少材料缺陷和解决连接问题等优势,在高价值行业中引起了极大关注。然而,后处理仍然是一个关键步骤,这表明需要进一步研究以了解 FGM 的可加工性。本文重点分析了基于不锈钢 316L (SAE 316L) 和 Inconel 718 的 FGM 的制造和加工特性。FGM 的制造从 100 wt.% 的 SAE 316L 开始,通过逐步增加 20 wt.% 的 Inconel 718 并同时减少 SAE 316L 来调整成分比。在 FGM 制造完成后,通过硬度测试、光学微观结构测量、能量色散光谱 (EDS) 和 X 射线衍射 (XRD) 全面分析了微观结构和机械性能。为了研究后处理方面,使用两种不同的铣削方法(向上和向下铣削)和加工路径(从 SAE 316L 向 Inconel 718,反之亦然)进行了端铣削实验。平均切削力在向上铣削时达到峰值 148.4 N,在向下铣削时降至 70.5 N,刀具磨损测量进一步提供了在使用 SAE 316L 和 Inconel 718 的 FGM 时最佳铣削方向的见解。
红外激光定向能量沉积 (DED) 铝材面临许多加工问题,例如成形性差、形成孔隙、反射率高等,这些都降低了生产率。本文开发并应用了 2 kW 高功率(450 nm)蓝光定向能量沉积 (BL-DED) 技术对纳米 TiB2 装饰的 AlSi10Mg 复合材料进行加工。单道实验表明,蓝光形成完全熔化轨道所需的功率密度低于红外激光(1060 nm)的功率密度。在 900 W 激光功率下,扫描速度为 4 mm/s,蓝光熔池宽度和深度分别约为 2500 μm 和 350 μm;而红外激光未能完全熔化,原因是铝对蓝光波长的吸收率较高。在 4 mm/s 下,等轴晶粒的面积分数高达 63%。据我们所知,这一结果是 DED 工艺单道熔池中等轴晶粒面积分数最高的一次。如此高的比例主要归因于平顶蓝光激光的低热梯度(8 × 10 5 K/m)和纳米 TiB2 颗粒的细化效果。我们的工作表明,与使用红外激光的铝合金和复合材料 DED 相比,高功率蓝光激光提高了效率和制造质量,这也有望帮助加工其他高反射率材料,如铜合金。
增材制造 (AM) 通常会导致钛合金强度高但延展性差。混合 AM 是一种能够同时提高延展性和强度的解决方案。在本研究中,通过将定向能量沉积与层间加工相结合,实现了 Ti-6Al-4V 的混合 AM。通过检查微观结构、残余应力和显微硬度,可以解释层间加工如何在保持与打印样品相同的强度的同时使延展性提高 63%。层间加工在打印中引入了反复中断,从而导致加工界面处针状 α 板条在缓慢冷却下变粗。选择性加工层上的粗 α 板条增加了拉伸载荷下的位错运动并提高了整体延展性。本出版物中强调的结果证明了混合 AM 提高钛合金韧性的可行性。关键词:混合增材制造、铣削、定向能量沉积、钛 1. 简介
摘要:金属增材制造工艺自诞生以来就得到了长足的发展,现代系统能够制造结构应用的部件。然而,要通过这些方法成功加工,需要进行大量实验,才能找到优化参数。在基于激光的工艺中,例如直接能量沉积,通常会沉积单道珠并进行分析,从而获得有关输入参数如何影响输出对基材的粘附等特性的信息。这些特性通常使用专门的软件从切割线珠的横截面获得的图像中确定。所提出的方法基于 Python 算法,使用 scikit-image 库和在 H13 工具钢上生产的 18Ni300 马氏体时效钢的光学显微镜成像,并计算 DED 生产的线珠的相关特性,例如轨道高度、宽度、渗透性、润湿性角度、基材上方和下方的横截面积和稀释比例。 18Ni300 马氏体时效钢沉积物的优化条件为:激光功率为 1550 W,进给速率为 12 g min −1,扫描速度为 12 mm s −1,保护气体流速为 25 L min −1,载气体流速为 4 L min −1,激光光斑直径为 2.1 mm。对于横截面焊道,计算其各自的高度、宽度和穿透力的误差分别为 2.71%、4.01% 和 9.35%;稀释比例计算的误差为 14.15%,基材上方面积的误差为 5.27%,基材下方面积的误差为 17.93%。处理一幅图像的平均计算时间为 12.7 秒。开发的方法是纯分段的,可以从机器学习实施中受益。
摘要:本研究采用激光定向能量沉积在 TiNi 形状记忆合金基体上构建富 Ti 三元 Ti-Ni-Cu 形状记忆合金,实现多功能双金属形状记忆合金结构的连接。采用经济高效的 Ti、Ni 和 Cu 元素粉末混合物作为原材料。采用各种材料表征方法来揭示两部分不同的材料特性。制备的 Ti-Ni-Cu 合金微观结构以 TiNi 相为基体,Ti 2 Ni 二次沉淀物。硬度没有显示出高值,表明主相不是硬质金属间化合物。通过拉伸试验获得了 569.1 MPa 的结合强度,数字图像相关揭示了两个部分不同的拉伸响应。使用差示扫描量热法测量相变温度。测得 Ti-Ni-Cu 合金截面的奥氏体终轧温度高于 80 ◦ C。对于 TiNi 基体,经测试,奥氏体终轧温度在底部接近 47 ◦ C,在上部基体区域约为 22 ◦ C,这是由于重复的激光扫描对基体起到了退火作用。最后,对两个形状记忆合金侧面的多重形状记忆效应进行了测试和识别。
摘要在这项工作中,采用了Abaqus AM建模者来模拟定向的能量沉积(DED)增材制造过程。建模器提供了一个自动接口,以开出施加的工具路径和过程条件。尽管可能需要一些努力才能了解如何使用这种元素 - 出生技术方法,但是如果您想模拟加法制造或类似流程,绝对值得付出努力。两个事件系列被用于规定材料沉积和热输入。使用自动元件激活序列用于制造薄(4×20×50 mm)和厚(12×20×50 mm)的壁成分的薄(12×20×50 mm)。要近似3D打印层构建的过程,每次扫描后,填充金属在行中逐行铺设,该组件由连续的10层(每个构建层的深度为1个元素至深度),每个层都有25个连续的元素行。一旦沉积第一层,能源和喷嘴向上移动以存放下一层,然后重复该过程,直到完整的3D对象被制造为止。发现,要模拟以时间和空间依赖空间添加材料和热量的问题,使用 *元素渐进激活选项的使用要比其对应方 *模型更改要简单得多。AM Modeler有助于正确地定义所需的数据以简单的方式近似3D打印层构建的过程。用Python语言创建了一个激光路径脚本,以允许能量源和喷嘴的路径。已建立了DED过程中打印参数(原料和热输入)的正确组合。
1 Argenco-MSM系,Li University of Li是GE,Quartier Polytech 1,Allé和De ladécourte9,4000 li是比利时GE; ra.tjardin@ulg.ac.be(R.T.J.); l.duchene@uliege.be(L.D. ); hstran@uliege.be(H.S.T.) 2机械工程系,弗朗西斯科·萨拉扎尔大学(Francisco Salazar)01145,Temuco 4780000,智利3系A&MS,Li IS GE,Quartier Polytech 1,Allé和De la de ladé法院9,4000 Li是GE,Belgium; j.tchuindjang@uliege.be(J.T.T。 ); s.neda.hashemi@gmail.com(N.H.); Anne.mertens@uliege.be(A.M.)4 Sirris Research Center(Li是GE),Bois St-Jean Rue Bois St-Jean 12,4102 Seraing,Belgium; raoul.carrus@sirris.be Be 5 Fonds de la recherche Scientif.r.s.s.s.-s.-s.-f.n.r.s.,1000 Bussels,Belgium *通信:victor.unninetti@ufrontera.cl(V.T. ); Anne.habraken@uliege.be(A.M.H. );电话 : + 56-452325984(V.T。 ); + 32-496607945(A.M.H.)); hstran@uliege.be(H.S.T.) 2机械工程系,弗朗西斯科·萨拉扎尔大学(Francisco Salazar)01145,Temuco 4780000,智利3系A&MS,Li IS GE,Quartier Polytech 1,Allé和De la de ladé法院9,4000 Li是GE,Belgium; j.tchuindjang@uliege.be(J.T.T。 ); s.neda.hashemi@gmail.com(N.H.); Anne.mertens@uliege.be(A.M.)4 Sirris Research Center(Li是GE),Bois St-Jean Rue Bois St-Jean 12,4102 Seraing,Belgium; raoul.carrus@sirris.be Be 5 Fonds de la recherche Scientif.r.s.s.s.-s.-s.-f.n.r.s.,1000 Bussels,Belgium *通信:victor.unninetti@ufrontera.cl(V.T. ); Anne.habraken@uliege.be(A.M.H. );电话 : + 56-452325984(V.T。 ); + 32-496607945(A.M.H.)2机械工程系,弗朗西斯科·萨拉扎尔大学(Francisco Salazar)01145,Temuco 4780000,智利3系A&MS,Li IS GE,Quartier Polytech 1,Allé和De la de ladé法院9,4000 Li是GE,Belgium; j.tchuindjang@uliege.be(J.T.T。); s.neda.hashemi@gmail.com(N.H.); Anne.mertens@uliege.be(A.M.)4 Sirris Research Center(Li是GE),Bois St-Jean Rue Bois St-Jean 12,4102 Seraing,Belgium; raoul.carrus@sirris.be Be 5 Fonds de la recherche Scientif.r.s.s.s.-s.-s.-f.n.r.s.,1000 Bussels,Belgium *通信:victor.unninetti@ufrontera.cl(V.T.); Anne.habraken@uliege.be(A.M.H.);电话: + 56-452325984(V.T。); + 32-496607945(A.M.H.)
摘要 基于激光的金属定向能量沉积模拟受到越来越多的关注,旨在减少选择适当的加工条件来修理或大修实际部件的实验工作。需要解决的主要问题之一是对残余应力的评估,残余应力可能导致零件在标称载荷下失效。在这方面,特别是涉及铝合金,很少有研究进行开发和验证。本文解决了这方面知识的缺乏:即,在单次沉积的情况下讨论了模拟沉积金属活化的正确方法,并将其转移到基板上多次沉积的情况。通过与 X 射线衍射产生的实际应力进行比较来验证预测的残余应力。
摘要:近年来,Inconel 625 的工业应用显著增长。这种材料是一种镍基合金,以其耐化学性和机械性能而闻名,尤其是在高温环境下。通过金属增材制造 (MAM) 生产的零件的疲劳性能在很大程度上取决于其制造参数。因此,表征由给定参数组生产的合金的性能非常重要。本研究提出了一种表征 MAM 零件机械性能的方法,包括通过激光定向能量沉积 (DED) 进行材料生产参数化。该方法包括在 DED 生产微型样品后对其进行测试,并由通过实验数据开发和验证的数值模型支持应力计算。本文讨论了通过 DED 生产的 Inconel 625 的广泛机械特性,重点是高周疲劳。使用微型样品获得的结果与标准尺寸样品非常一致,因此即使在某些塑性效应的情况下也验证了所应用的方法。至于高周疲劳性能,通过 DED 生产的样品表现出良好的疲劳性能,可与其他竞争金属增材制造 (MAMed) 和传统制造的材料相媲美。