13. 报告类型和涵盖时间 最终报告 2020 年 7 月 1 日 – 2023 年 9 月 5 日 14. 赞助机构代码 15. 补充说明 16. 摘要 研究了两种类型的圆形涵洞出口能量消能装置:全长堰和交错堰。查阅了相关文献;建造了一个模型断背圆形涵洞和消能盆;安装了仪器以测量流量、测压水头和速度;并且在一系列流量和尾水范围内测试了四种尺寸的全长堰和交错堰。堰高范围从 D/8 到 4D/8,其中 D 为涵洞直径。两种堰类型经过两种类型的试验:(1)不受尾水影响的试验和(2)受尾水影响的试验。对于较高的全长堰(3D/8 和 4D/8),可以通过简单的堰方程、关于上游流量的一般假设以及没有水头损失的能量方程合理地预测盆地出口深度。对于较短的堰(D/8 和 2D/8),流量掠过堰,堰方程无效,尤其是在高流量的情况下。在这些情况下,堰不是有效的能量消散器。对于最高的堰,出口能量与临界深度的比率大致恒定。当堰高为 4D/8 和 3D/8 时,出口比能分别约为临界深度的 3.2 倍和 2.9 倍。对于交错堰也发现了类似的结果,但当堰高为 4D/8 和 3D/8 时,比能分别为临界深度的 2.7 倍和 2.9 倍。结果可用于确定消能盆出口流速,对于全长和交错堰,流入流出弗劳德数在 3.8 至 4.6 范围内,高度范围为 D/8 至 4D/8。17. 关键词 能量耗散、涵洞出口、断背涵洞、冲刷防护、堰、交错堰、挡板
摘要量子点蜂窝自动机(QCA)代表新兴的纳米技术,该纳米技术有望取代当前的互补金属 - 氧化物 - 氧化物 - 氧化电导剂数字整合电路技术。QCA构成了一种极为有希望的无晶体管范式,可以将其降低到分子水平,从而促进TERA级设备的整合和极低的能量耗散。可逆QCA电路的可逆性从逻辑级别降低到物理水平,可以执行比Landauer能量限制(KBTLN2)耗散能量更少的计算操作。逻辑门的时间同步是必不可少的附加要求,尤其是在涉及复杂电路的情况下,以确保准确的计算结果。本文报告了逻辑和物理上可逆的时间同步QCA组合逻辑电路的八个新的设计和仿真。此处介绍的新电路设计减轻了时钟延迟问题,这些问题是由逻辑门信息的非同步,通过使用固有的更对称的电路配置引起的。模拟结果证实了提出的可逆时间同步QCA组合逻辑电路的行为,该逻辑电路表现出超大的能量耗散,并同时提供了准确的计算结果。
在本文中,我们引入了具有梯度流结构的连续性方程的半隐式或隐式有限差分格式。这类方程的例子包括线性 Fokker-Planck 方程和 Keller-Segel 方程。这两个提出的格式在时间上是一阶精度的,明确可解,在空间上是二阶和四阶精度的,它们是通过经典连续有限元法的有限差分实现获得的。全离散格式被证明是正性保存和能量耗散的:二阶格式可以无条件地实现这一点,而四阶格式只需要一个温和的时间步长和网格尺寸约束。特别地,四阶格式是第一个可以同时实现正性和能量衰减性质的高阶空间离散化,适用于长时间模拟并获得精确的稳态解。
摘要:缓解全球气候变化和全球二氧化碳排放的途径导致化石燃料以可再生能源的发电而大规模替代化石燃料。向可再生能源的过渡需要开发大规模存储系统,以满足消费者的小时需求。本文概述了可用的储能系统,可帮助过渡到可再生能源。该系统被分类为机械(pH,CAES,流动,弹簧),电磁(电容器,电气和磁场),电化学(电池,包括电池电池),氢和热能存储系统。重点放在每个系统能够实现的能源存储的大小上,热力学特性,系统适合于系统的相关形式以及在充电和放电期间的相关形式以及能量消散。
液压工程中的反复出现的需求是一种简单,可靠的方法,用于耗散雨水流向陡峭的排水通道中的多余能量。过去,这个问题通常是通过某种形式的盆地来处理的。在许多情况下是实用的替代方法是提供频道本身中的粗糙度元素。这样的元素可以设计为产生通道中翻滚流的现象。这是一个循环均匀的流动,由一系列液压跳和叠加组成,它确保通道出口速度不会超过给定放电的已知“临界速度”。实验室和现场研究是在弗里吉尼亚理工学院进行的,目的是为这种能量耗散方法制定设计标准。根据这些测试,建议使用二维正方形元素或立方元素。设计方程,以及有关元素间距和放置的建议。
基于高分辨率湍流微结构和近地表速度数据,研究了本格拉上升流系统(东南大西洋)中瞬态上升流细丝内的锋面不稳定性及其与湍流的关系。我们的研究重点是位于细丝边缘的尖锐亚中尺度锋面,其特点是持续的下锋风、强劲的锋面急流和剧烈的湍流。我们的分析揭示了三种不同的锋面稳定状态。(i)在锋面的浅侧,发现了一个 30-40 米深的湍流表面层,具有低位势涡度 (PV)。这个低位势涡度区域呈现出明确的两层结构,上层为对流(埃克曼强迫),下层为稳定分层,其中湍流由强迫对称不稳定性 (FSI) 驱动。该区域的耗散率与埃克曼浮力通量成比例,与 FSI 的最新数值模拟具有很好的定量一致性。(ii)在锋面喷射的气旋侧翼内,靠近横向锋面密度梯度的最大值,气旋涡度足够强,可以抑制 FSI。该区域的湍流是由边缘剪切不稳定性驱动的。(iii)在锋面喷射的反气旋侧翼内,混合惯性/对称不稳定性的条件得到满足。我们的数据为 FSI、惯性不稳定性和边缘剪切不稳定性与亚中尺度锋面和细丝中整体动能耗散的相关性提供了直接证据。
�� ... �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ��������������������������������������������������������������������� ������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������ �������������������������������������������������������������������������������������������������� ����������������������������������������������������������������������������������