碘化物类似物的晶体结构表明:• 萘发色团彼此垂直 • 相邻萘的 pi 轨道之间的电子相互作用非常小
N 4至20MW尺寸安装在阿布扎比的11个变电站中。n Abu Dhabi具有1GW的PV,可在2026年延长6.5GW PV。n 5.6 GW核电运行计划从2026年开始。n储备量对于频率控制和能量转移是必需的。
摘要:大规模胶体量子点 (QDs) 组件的设计及其与周围环境相互作用的研究对于提高基于 QD 的光电器件性能具有重要意义。了解在只有少数 QD 以较短的粒子间距离组装时发生的相互作用机制对于更好地促进电荷或能量转移过程至关重要。在这里,在溶液中制造由少量两种不同尺寸的 CdSe QD 形成的小异质组件,这些 QD 通过烷基二硫醇连接。通过将双功能间隔物的线性烷基链长度从纳米到亚纳米范围进行改变,可以调整粒子间距离。晶体学分析强调,参与 QD 之间连接的最近表面是 (101) 面。彻底的光谱研究使相互作用的纳米粒子之间的耦合机制得以合理合理化,范围从电荷转移/波函数离域到能量转移,具体取决于它们的分离距离。
摘要:研究了采用低热梯度提拉技术(LTG Cz)生长的 Eu 3 + 掺杂 Bi 12 GeO 20(BGO)硅铅矿块状晶体的光谱特性。测量了室温(300 K)和 10 K 下的吸收光谱和发射特性。观察到由 Eu 3 + 离子直接激发和由 Bi 3 + 和 Eu 3 + 离子之间的能量转移引起的紫外激发下的发光。研究了 Eu 3 +:BGO 掺杂基质中 Bi 3 + → Eu 3 + 的能量转移机制。基于 Judd-Ofelt 形式计算了 Ω λ 参数和辐射寿命。基于获得的实验结果,还确定了分支比和电偶极跃迁概率。已观察到 Eu 3 + 的 5 D 0,1,2 能级发出的发光,其中 5 D 0 能级的发光最强。观察到的最强发光带对应于 578.7 nm 处的 5 D 0 → 7 F 0 跃迁。研究了理论上被禁止的 5 D 0 → 7 F 0 发光强烈存在的原因。
2.2.1.简史 ................................................................................................................ 9 2.2.2.等离子体状态的定义 .............................................................................................. 11 2.2.3.萨哈方程 ............................................................................................................ 13 2.2.4.自然界中的等离子体 ............................................................................................. 17 2.2.5.实验室中的等离子体 ............................................................................................. 18 2.2.6.等离子体中的能量转移 ............................................................................................. 26 2.2.7.液体中的等离子体 ............................................................................................. 29
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。
辐射目标:• 在阻塞配置(处于供电反向偏置/关闭状态)下,重离子不会在辐射时引起永久性破坏效应,离子具有 40 MeV-cm 2 /mg 的硅等效表面入射线性能量转移 (LET),足以维持整个外延层的 LET 水平上升。
在激光驱动的惯性融合(ICF)中,使用高强度激光器来驱动胶囊,这些胶囊可以达到核造型和核能所需的温度条件[1]。这需要多个重叠的激光束才能通过融合胶囊周围的等离子体传播。等离子体介导激光束之间的能量转移,这会破坏能量耦合和/或引起辐射不均匀性[2,3]。为了说明这种横梁能量转移(CBET),在用于模拟ICF实验的水动力代码中已实现线性模块[4,5]。预测能量转移的能力对于所有激光驱动的ICF概念的成功至关重要。梁之间的功率传递对等离子体条件敏感。图1(a)突出了CBET对离子温度的敏感性,强调了准确模型在确定血浆构造方面的重要性,以预测其对内爆的影响。导致了隔离建模和实验性观察物之间的误差的挑战[6],这使得很难理解线性CBET理论的局限性[7]。粒子中的模拟表明,当离子声波驱动到大幅度时,非线性效应将修改能量转移,从而导致与线性CBET理论偏离[8,9]。迄今为止,最完整的研究使用了从电子血浆波中进行的汤姆森散射来测量电子温度和密度,同时测量了能量传递[12,13]。早期的实验似乎证实了这张照片,这表明需要非线性物理来建模相互作用,但是这些实验主要依赖于流体动力学建模来确定血浆条件[10,11],并且由于血浆条件的不确定性是饱和物理学的不确定性的,因此难以捉摸。在小离子 - 声波上(Δn/n e <1%),这些实验是通过线性CBET理论很好地调节的,但是对于较大的离子声学