摘要:最近的研究表明,包括脑脉冲振幅在内的脑搏动性的光指数与脑血管健康有关。长期较高的大脑搏动性与认知能力下降有关。尽管众所周知,常规身体活动可以提高认知功能,但对体育活动与脑搏动性的光学指数之间的关联知之甚少。这项研究评估了12个月的定期体育活动对脑搏动性光学指数变化的影响,并探讨了其与认知的关联。共有19名具有心血管危险因素(CVRF)的老年人(59-79岁)完成了这项研究。低强度,短期步行作为短暂的心血管挑战,用于研究常规体育锻炼对脑搏动性指数后运动后变化的影响。参与者在体育轨道上行走,而近红外光谱(NIRS)设备记录了额叶和运动皮层子区域的血液动力学数据。我们的数据表明,12个月的体育活动与较低的全球脑脉冲振幅有关,这与执行功能的认知得分较高有关。此外,短期步行后,全球大脑搏动指数减少了,与基线相比,常规体育锻炼12个月后,这种减少量更大。这可能表明定期体育锻炼后对心血管挑战的脑血管反应有所改善。这项研究表明,12个月的体育活动可以通过改善CVRF老年人的脑搏动性来支持认知功能。
研究深脑刺激(DBS)的临床研究提供了其在帕金森氏病(PD)(PD)和肌张力障碍(1)等运动障碍中运动症状治疗中的有效性的证据。深脑刺激涉及通过定义振幅,宽度和频率的电脉冲来刺激特定的大脑结构。脉冲是由通过植入的电线连接到靶向位于特定脑结构邻近的电极阵列的植入脉冲发生器(IPG)生成的。阵列中的电极可以具有环形或分段(即定向),后者的径向跨度较小,可以传递更大的局灶性刺激,从而导致临床良好的效果(2-6)。然而,DBS中的方向潜在线在植入程序中涉及新的挑战,因为方向引线的最终方向通常会随着预期的方向而偏离(7)。因此,取决于IPG的电子架构的引导刺激场的准确性在方向性DBS中起重要作用。市售的DBS系统使用电压控制或电流控制的电子体系结构。电压控制的系统在刺激的电极处设置了固定电压,而电流受控系统设置了固定的电流(8)。这两个架构可以合并单个源或多个来源来生成脉冲。单源体系结构可以通过同时激活一个电极或多个电极来传递刺激。在后一种情况下,称为共激活(9),由单个源控制的脉冲振幅将根据激活电极的阻抗的比率按比例分配。因此,为了共同激活,更多的电流会流过较低阻抗的电极。多个源体系结构可以明确指定由每个同时激活的电极独立传递的脉冲振幅。这种体系结构与电流受控体系结构相结合,可确保将传递给每个电极的总电流保持恒定,而不管总电极阻抗中的变化如何或活性电极之间的阻抗比。此功能可以控制DBS中的刺激场的控制转向(10)。多个独立电流控制技术(MICC)是多源和当前控制体系结构组合的一个示例。具有单一源或多个源体系结构的商业刺激器,还可以通过通过铅或电极传递多个脉冲序列来控制刺激时间。从历史上看,DBS中的这种能力被称为交织(11),最近被称为多刺激集(MSS)刺激(9)。交织/MSS涉及替代方案,因此不同时激活具有定义的脉冲振幅(电压或电流)的单电极,从而导致多个刺激率局部的交替(打击)产生。相互交织/MSS被建议作为刺激场转向选项,因为在这些刺激场的交点中,神经组织的频率将比在交叉点外(12)刺激。
缩写:BI - 贝叶斯推断; FD - 铁蛋白;它 - 内部转录的间隔者; M 0 - 荧光升起的斜率(O – J); ML - 最大可能性; PAM - 脉冲振幅调制; PBR - 光生反应器; PC - 塑素蛋白; PCR - 聚合酶链反应; PQ - 质喹酮; RC - 反应中心; rDNA - 核糖体脱氧核糖核酸; RLC - 快速光曲线; ROS - 活性氧。致谢:作者承认,伊法勒支持Maorix项目,Cresica支持Microcomet项目,以及新喀里多尼亚的南部省,用于为V. Meriot的博士学位奖学金提供资金,并提供了采样授权(20274-2019/2-ISP/DENV)。我们要感谢Adecal Technopole的技术支持。†这些作者也同样贡献。利益冲突:作者声明他们没有利益冲突。
摘要:高功率和低变异性人工神经元设备非常需要高性能神经形态综合。在本文中,基于低可变性Ag纳米(NDS)阈值开关(TS)设备的振荡神经元具有低操作电压,较大的ON/OFF/OFF比率和高均匀性。测量结果表明,该神经元的示范在低至1 V的施加电压下表现出自振荡行为。振荡频率随施加的电压脉冲振幅而增加,并且随着载荷电阻而降低。然后,当振荡神经元连接到用于神经形态计算的RRAM Crossbar AR-Ray的输出时,可以准确地评估电阻随机记忆(RRAM)突触权重。同时,模拟结果表明,由于AG NDS TS设备的高开/OFF比(> 10 8),我们的振荡神经元可以通过我们的振荡神经元来支持大的RRAM横杆阵列(> 128×128)。此外,AG NDS TS设备的高均匀性有助于提高输出频率的分布并抑制神经网络识别精度的降解(<1%)。因此,基于AG NDS设备的开发的振荡神经元显示出对未来神经形态计算应用的巨大潜力。
•它可用于驱动光合作用(健康植物中83%的能量),•可以将其散发为热量(最多15%的能量),或者可以将其重新定为红色叶绿素荧光(3-5%)。这三个命运是互补的,因此荧光产量的变化反映了光化学效率和热量耗散或非光化学淬火的变化。叶绿素荧光成像已成为对生物和非生物刺激或环境变化的反应,以监测植物光合作用的变化的最强大和流行的工具之一。叶绿素荧光动力学参数的变化经常发生在应激的其他影响之前。叶绿素荧光的检测是快速,无创的,并且可以随着时间的推移观察和定量抑制作用。在抑制位置的异质性可以通过叶绿素荧光成像系统轻松显示和定量。氟型设备用于在脉冲振幅调制模式和饱和脉冲方法中监测荧光动力学,该方法提供了有关植物光合作用,生理和代谢条件的大量信息,以及其对各种应力条件的敏感性。叶绿素荧光产率是在黑暗适应植物中使用短饱和闪光(饱和脉冲)或用光合作用的活性阳光照明的。叶绿素荧光的变化用于描述植物对植物表面提供的光能的光化学和非光化学淬灭的表现。
摘要 - 视网膜假体可以改善受感光者退行性疾病盲目的患者的视力。尽管人为视力受益,但这些假体的空间分辨率低限制了临床上可用设备的积极影响。视觉植入物中单电极产生的视觉感知可以重叠并导致不清楚的图像,这限制了视网膜假体使用者的形状和字母感知。然而,研究表明,在靶神经元近距离近端植入的较小的电极可能可以使用较小的分辨率。在这项研究中,我们使用穿透性亚细胞纤维微电极在离体小鼠视网膜中进行了视网膜刺激,并进行了钙成像以记录视网膜神经节细胞(RGC)的空间激活,以响应不同的刺激振幅和RGC-电极距离。我们观察到较小的RGC空间活性和较高的RGC - 电极距离较小的脱靶刺激,这可能是通过双极细胞间接RGC激活的指示。碳纤维电极的阻抗测量在整个插入和刺激过程中证明了它们的机械和电稳定性。我们的结果表明,脉冲振幅和电极深度的修饰会在活动电极周围产生小而焦点的响应。用碳纤维进行的视网膜刺激可能会增加临床应用中视网膜假体的刺激精度和图像分辨率。
Z串扰是由于低频Z偏置信号未完全定位于单个量子的事实。每个量子位的单个Z偏置信号在整个芯片上具有空间分布,但是强度随量子位的距离而衰减。假设j -th Qubit q j的z脉冲振幅(ZPA)是z j,并且其z控制线与i -th Qubbit q I是r i,j之间的垂直距离,那么q j的z线感觉到Q i的磁感应强度可以表示为q j的z线,如b i←b i←j j j / r i i←j j j j / r i,j,j。因此,相应的串扰通量为φi←j = b i←j i = c i←j z j J,其中s i表示q i的squid和c i←j s i / r i,j表示每单位zpa的通量crosstalk。为了补偿串扰φI←J,我们在Q i的Z线上应用φi←i = c i←i out z i z i i i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←i←