近视脉络膜新生血管形成(MCNV)是许多视网膜疾病中最常见的病理近视的最常见危险性综合体之一。光学相干断层扫描血管造影(OCTA)是一种新兴的非侵入性成像技术,最近被包括在MCNV的研究和处理中。但是,没有标准工具可以及时且可靠地分析MCNV的八颗图像。在这项研究中,我们提出了一个可自定义的ImageJ宏,该宏可自动使用八粒图像处理,并允许用户测量9个MCNV生物标志物。我们开发了一个三阶段图像处理管道,以使用宏来处理八幅图像。首先对图像进行手动描绘,然后使用高斯滤波器进行DINO。这是由Frangi滤波器和局部自适应阈值的应用。最后,使用墨西哥帽子过滤器获得了Skele的图像。从骨架化图像中计算出包括连接密度,容器直径和分形尺寸在内的九种血管生物标志物。在所有生物标志物的26八八张图像数据集上测试了宏。在计算的生物标志物值中出现了两个趋势。首先,病变大小的依赖参数(MCNV面积(mm 2)平均值= 0.65,SD = 0.46)显示较高的变化,而归一化参数(符合性密度(N/mm):平均值= 10.24,SD = 10.63)在整个数据集中都是均匀的。计算值与现有文献中的手动调查一致。结果说明了我们的ImageJ宏是手动八片图像处理的替代方案,包括用于批处理处理和参数自定义的规定,提供了MCNV的系统,可靠的分析。
摘要 目的 研究遥测脉络膜上眼压 (IOP) 传感器 (EYEMATE-SC) 的安全性和性能及其在同时接受非穿透性青光眼手术 (NPGS) 的开角型青光眼 (OAG) 患者中的眼压测量准确性。方法前瞻性、多中心、开放标签、单组、介入性临床试验。24 名定期接受 NPGS(小管成形术或深部巩膜切除术)的 OAG 患者的 24 只眼睛同时植入 EYEMATE-SC 传感器。对传感器的安全性和性能以及 EYEMATE-SC 测量值与 Goldmann 压平眼压计 (GAT) 测量值的一致性水平进行六个月的随访。结果这些眼睛接受了小管成形术(n=15)或深部巩膜切除术(n=9)并成功植入传感器。没有发生装置移位、脱位或严重的装置相关并发症。眼压一致性分析共纳入 367 次比较。GAT 和 EYEMATE-SC 测量值之间的总体平均差异为 1.31 毫米汞柱(一致性下限 (LoA) 7.55 毫米汞柱;一致性上限 –4.92 毫米汞柱)。第 10 天达到最大差异 2.5 毫米汞柱 ±3.96(LoA 0.30–2.29),并在 6 个月后持续改善至一致性 –0.15 毫米汞柱 ±2.28(LoA –1.24 至 0.89)。因此,眼压差异在 ±5 毫米汞柱范围内的眼睛百分比从 78%(第 3 天)提高到 100%(6 个月)。结论 6 个月后,EYEMATE-SC 传感器安全且耐受性良好,并允许持续监测眼压。试验注册号 NCT03756662。
1约翰·霍普金斯大学医学院,巴尔的摩,马里兰州2号医学系,约翰·霍普金斯大学医学院临床药理学系,巴尔的摩,马里兰州巴尔的摩大学医学院3神经变性和干细胞计划,约翰·霍普克斯大学医学院,巴尔蒂群岛医学院,约翰·霍尔斯特大学,约翰·霍尔斯特·霍尔斯特,约翰马里兰州,马里兰大学药学系5号,马里兰州巴尔的摩大学药学院,马里兰州,马里兰州6号,加利福尼亚大学伯克利分校化学系6加利福尼亚州伯克利,约翰·霍普金斯大学医学院,马里兰州巴尔的摩的约翰·霍普金斯大学医学院神经科学系10号。美利坚合众国
旨在更好地了解这些稳健键的键合和反应性的研究已成为追求核废料修复的中心研究点。已经报道了在铀酰疾病中官能化U = O键的几种方法,最流行的是通过与甲硅烷基离子的反应性使用还原性裂解(图1)。4,5 One of the first reported examples detailing activation of the uranyl(VI) dioxo moiety was detailed by Ephritikhine in 2006, in upon the addition of excess silylating reagent (Me 3 SiX, where X = Cl, Br, or I), UO 2 I 2 (THF) 3 or UO 2 (OTf) 2 are converted to a tetravalent uranium halide salt, UX 4 (MECN)4。3这种反应性利用了强Si -O键形成的热力学驱动力,从而通过相应的卤化物的氧化来促进铀氧键的还原性裂解。6后来,爱与同事报告了通过还原性的硅烷基硅烷二烯化的键键激活的机理的进一步见解。在这项工作中,铀酰的协调
在临床前研究中,利用单个 gRNA 对血管内皮生长因子 A (Vegfa) 进行基于成簇的规律间隔短回文重复序列 (CRISPR) 的基因组破坏可抑制脉络膜新生血管 (CNV),为新生血管性年龄相关性黄斑变性 (AMD) 的长期抗血管生成治疗提供了前景。使用 CRISPR-CRISPR 相关核酸内切酶 (Cas9) 和多个向导 RNA (gRNA) 进行基因组编辑可以通过用基因截断增强插入-缺失 (indel) 突变来增强基因消融效果,但也可能增加脱靶效应的风险。在本研究中,我们比较了腺相关病毒 (AAV) 介导的 CRISPR-Cas9 系统使用单个和配对 gRNA 靶向 Vegfa 基因中在人类、恒河猴和小鼠中保守的两个不同位点的有效性。配对 gRNA 在体外增加了人类细胞中 Vegfa 基因消融率,但在体内并未增强小鼠眼中的 VEGF 抑制。与单个 gRNA 系统相比,使用配对 gRNA 的基因组编辑也显示出相似程度的 CNV 抑制。使用通过测序 (GUIDE-seq) 实现的全基因组无偏双链断裂 (DSB) 识别进行的无偏全基因组分析揭示了由第二个 gRNA 引起的微弱脱靶活性。这些发现表明,使用两个 gRNA 进行体内 CRISPR-Cas9 基因组编辑可能会增加基因消融,但也可能会增加脱靶突变的潜在风险,而针对 Vegfa 基因中的另一个位点作为新生血管性视网膜疾病治疗的功能益处尚不清楚。
b“摘要。我们考虑了u t d r ..u/ r n .u //的形式的方程式,其中n是整个空间r d和.u/是纽顿电位(laplacian的倒数),并且.u/是移动性。对于线性迁移率,.U/ D U,已提出方程和一些变化作为超导性或超流体的模型。在这种情况下,该理论会导致具有紧凑空间支持的特性的有界弱解的唯一性,特别是在空间强度u d c 1 t 1中具有恒定强度的圆盘涡流的特殊溶液在球中支撑的恒定强度的涡流涡流,在c 2 t 1 = d之类的时间内传播,因此显示出不连续的前面前面的前线。在本文中,我们提出了具有sublinear Mobility .u/ d u \ xcb \ x9b的模型,并使用0 <\ xcb \ x9b <1提出,并证明非负溶液到处恢复了积极性,并且在无限范围内显示出脂肪尾巴。该模型以许多方式作为上一个模型的正规化。尤其是,我们发现上一个涡流的等效物是一种明确的自相似解,如u d o.t 1 = \ xcb \ x9b /带有尺寸u d o的空间尾巴的时间。我们将分析限制为径向溶液,并通过特征方法构建解决方案。我们介绍了质量函数,该质量函数解决了汉堡方程的异常变化,并在分析中起着重要作用。我们从粘度解决方案的意义上表现出良好的性质。我们还构建了数值有限差分收敛方案。”
除了脉络膜上腔应用外,研究表明,该技术还有望将药物输送至睫状体上腔、8 视网膜下腔 9 和角膜。10 其中一个值得关注的领域是将原位形成的水凝胶输送到脉络膜上腔,这可能会降低青光眼患者的眼压。11 微针潜在应用的扩大意味着 Visionisti 平台的潜力也得到了扩大,可以使用标准的皮下注射针和实心针将注射疗法输送到这些部位。此外,与专用微针相比,Visionisti 平台的另一个好处是,可以使用相同的可调节适配器根据每个潜在输送目标调整暴露的针长度,而不需要专门针对每个目标使用不同的微针。Visionisti 平台的知识产权受到广泛保护;Visionisti 在欧洲、日本和美国拥有技术专利,在欧洲和美国拥有设计专利。
4,5 学生,SRM 科学技术研究所软件工程系摘要 - 在本研究中,我们打算使用深度学习架构来诊断视网膜光学相干断层扫描 (OCT) 图像中的脉络膜新生血管。光学相干断层扫描 (OCT) 图像可用于区分健康眼睛和患有 CNV 疾病的眼睛。研究中使用了深度学习的 DenseNet 和 Vgg16 架构,并更改了两种架构的超参数以正确诊断疾病。检测到疾病后,使用用于处理图像的 Python OpenCV 库将患病的 OCT 图像与背景分割开来以进行感兴趣区域检测。架构实施的结果表明,Vgg16 在检测图像方面比密集网络架构表现出更好的效果,准确率为 97.53%,比密集网络高出约一个百分点。关键词——深度学习、CNN、Vgg16 模型、密集网络模型、视网膜 OCT I 引言光学相干断层扫描是诊断视网膜疾病最广泛使用的诊断成像方法之一。OCT 机器的输出提供 OCT 图像,并提供足够的可视化效果来预测 OCT 胶片上印记的视网膜血管是否存在一些定性和定量变化。视网膜层的增加或减少及其测量值是疾病检测临床试验中的主要评估指标。定期进行视网膜 OCT 扫描有助于早期发现任何与视网膜相关的疾病,并可在年老时避免 [9]。如果在身体中检测到视网膜疾病,许多大脑、眼睛和心血管系统疾病都已出现。通过 OCT 扫描还可以检测到各种其他疾病,患有糖尿病的人患糖尿病视网膜病变的几率很高,而且任何类型的黄斑水肿也可以在视网膜 OCT 图像中看到。本研究主要关注脉络膜新生血管 (CNV),它是发达国家失明的主要原因之一。通俗地说,脉络膜新生血管可以定义为视网膜脉络膜层中额外血管的生成。同一脉络膜层的最内层称为 Brunch 膜 (BM),任何类型的膜损伤都可能导致视网膜脉络膜新生血管,并导致未来失明。近年来,深度学习在医学图像中对患病和未患病图像进行分类的应用有所增加。事实证明,CNN 等深度学习技术在物体检测、图像识别和分割方面也大有用处。因此,这证明了使用深度学习分析 OCT 图像以获取患病图像的重要性。使用深度学习 Vgg16 和 DenseNet 的最新架构对患病图像的预测进行比较。然后分割患病图像以突出显示视网膜层中具有脉络膜新生血管的增强血管和空洞形成 [6]。 * 通讯作者:MS Abirami,abirami.srm@gmail.com
抽象背景本研究旨在评估受中央浆膜脉络膜肾上腺病(CSC)影响的患者的光学相干层析造影血管造影(八八核血管造影)图像的血管模式和毛细血管流量密度(CFD)图。在这项回顾性队列研究中的方法,八颗(Angiovue rtvue Xr avanti,optovue)在基线时对CSC患者的两只眼睛的两只眼睛进行了3×3 mm黄斑扫描;对图像进行了细分,并将其与没有CSC的同伴以及年龄匹配的健康受试者进行了比较。八颗图像,以提供脉络膜毛细管变化的客观分级。通过自相关方法检查了八颗图像的纹理。导致CSC(40眼)的眼睛,我们发现了脉络膜毛细血管层脉管系统(CCL)的六种不同的形态模式,可能对应于OCT脉络膜脉络膜低反射性的不同等级和去率信号的八八八个。此外,八毛毛细管流量密度图显示在表面毛细血管丛中的毛细血管耗竭(p值= 0.0023),深血管网络(p值= <0.0001)和CCL中(p值= 0.0001)。在健康受试者中未观察到这种发现(13眼)。结论CSC中的OCTA是一个有用的工具,可以通过特定的CCL模式识别CSC的临床类型。此外,观察到CFD耗竭与内部视网膜层相关,表明内部血液视网膜屏障参与CSC。根据我们的结果,本文观察到的模式可能与疾病的不同临床亚型有关。
作者详细信息 1 加拿大安大略省多伦多市 PGCRL 儿童医院遗传学和基因组生物学项目,686 Bay Street,邮编 M5G 0A4。2 加拿大安大略省多伦多市 PGCRL 儿童医院计算医学中心,686 Bay Street,邮编 M5G 0A4。3 癌症研究之友,1800 M Street, NW, Suite 1050 South,邮编 20036,美国。4 多伦多大学计算机科学系,40 St. George Street,邮编 M5S 2E4,加拿大。5 加拿大安大略省多伦多市儿童医院临床和代谢遗传学科,邮编 M5G 1X8,大学大道 555 号。6 加拿大安大略省多伦多市儿童医院儿科实验室医学科,邮编 M5G 1X8,大学大道 555 号。 7 加拿大安大略省多伦多市大学大道 555 号儿童医院血液学/肿瘤学部,邮编 M5G 1X8。8 加拿大安大略省多伦多市大学大道 555 号儿童医院儿科,邮编 M5G 1X8。9 加拿大安大略省多伦多市大学玛格丽特公主癌症研究大楼 MaRS 中心医学生物物理学系,邮编 M5G 1 L7 大学街 101 号。10 英国剑桥癌症中心罗宾逊路剑桥 CB2 0RE 肿瘤学部。11 美国俄亥俄州哥伦布市全国儿童医院和俄亥俄州立大学神经肿瘤学项目,邮编 43205,儿童大道 700 号。 12 加拿大蒙特利尔麦吉尔大学健康中心儿童医院血液学/肿瘤学部(RI-MUHC),1001, Decarie Blvd, Montreal, Québec H4A 3 J1。13 德国明斯特大学医院神经病理学研究所,48149 Münster。14 海德堡国家癌症中心 Hopp 儿童癌症中心(KiTZ),Im Neuenheimer Feld 280, 69120 Heidelberg,德国。15 德国癌症研究中心(DKFZ)和德国癌症研究中心儿科神经肿瘤学部