深度学习方法有可能减轻放射科医生处理繁琐的,耗时的任务,例如检测和细分病理病变[1],但是在医学成像的背景下对神经网络的培训面临着主要的挑战:它们需要训练大量图像,因为这是很难获得的,因为在许多方面都可以限制医疗信息,并且由于许多方面的范围限制了其他方面的范围。此外,虽然在世界各地的医院数据库中可以提供相对较大的医学图像,但这些图像是未标记的,并且不同的机构以派遣和不均匀的方式保存医疗图像,这使得它们在较大的数据库中收集它们。在这种情况下,从头开始生成医学图像的方法可能引起人们的极大兴趣。生成建模是机器学习的一个子字段,它在产生新的高质量自然图像(例如面部照片[2])方面具有令人印象深刻的精力[2],并应用于语音综合[3]和磁共振图像重建等任务[4]。如果可以教导生成模型来产生现实且多样化的新医学图像,那么它们将具有很有吸引力的潜力,可以显着增加可用于深神经网络培训的图像数量,因此可以帮助提高这些网络的准确性[5-7]。
神经科学的最新进展强调了多模式医学数据在研究某些病理和了解人类认知方面的有效性。但是,获得一组不同的模态的完整集受到各种因素的限制,例如长期获取时间,高检查成本和伪影抑制。此外,神经影像数据的复杂性,高维度和异源性仍然是有效地利用现有随机扫描的另一个关键挑战,因为不同机器通常对相同方式的数据进行了不同的测量。显然需要超越传统成像依赖性过程,并从源中综合解剖学特定的目标模式数据。在本文中,我们建议学习使用新型CSCℓ4NET跨内部和模式内变化的专用特征。通过特征图和多元典范适应性中的模态数据的初始统一,CSCℓ4净4净促进了特征级别的相互转换。正定的riemannian歧管 - 惩罚数据限制项进一步使CSCℓ4NET可以根据变换的特征重新构建缺失测量值。最后,最大化ℓ4 -norm沸腾到计算上有效的优化问题。具有较大的实验可以验证我们的CSCℓ4NET的能力和鲁棒性与Multiple数据集中的最新方法相比。
Poldrack,Russell A. 1,Markiewicz,Christopher J. 1,Appelhoff,Stefan 2,Ashar,Yoni K. 3,Auer,Tibor 4,5,Baillet,Sylvain,Sylvain 6,Bansal,Bansal,Shashank 7,Shashank 7,Beltrachini,Beltrachini,Beltrachini,Leanar,Leanar,Benar,Christian G. 9,Bertazzoli,bertazzoli,bertazzoli,bertazzoli,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,1111 ,, ,Blair,Ross W. 1,Bortoletto,Marta 10,Boudreau,Mathieu 16,Brooks,Teon L. 1,Teon L. 1,Calhoun,Vince D. 17,Castelli,Castelli,Filippo Maria 18,19,Clement,Clement,Patricia 20,21,Cohen,Cohen,Cohen,Cohen,Alexander L.22 23,24,吉尔斯(De Hollander),吉尔斯(De Hollander),25,de la iglesia-vayá,玛丽亚26,de la vega,Alejandro 27,Delorme,Arnaud,28,Devinsky,Orrin 29,Draschkow,Draschkow,Dejan,Dejan 30,Duff,Duff,Eugene Paul 31,Dupre,Dupre,Elizabeth 1,Earlin,Erlin,Erlind 32 Illaume 34,Galassi,Anthony 32,Gallitto,Giuseppe 35,36,Ganz,Melanie 37,38,Gau,Rémi39,Gholam 39,Gholam,James 40,Ghosh,Satrajit S. 41,Giacomel,Giacomel,Giacomel,Alessio,Alessio,Alessio 42 44 , Gramfort, Alexandre 45 , Guay, Samuel 46 , Guidali, Giacomo 47 , Halchenko, Yaroslav O. 48 , Handwerker, Daniel A. 32 , Hardcastle, Nell 1 , Herholz, Peer 49 , Hermes, Dora 50 , Honey, Christopher J. 51 , Innis, Robert B. 32 , Ioanas, Horea-Ioan 48 , Jahn, Andrew 52 , Karakuzu, Agah 16 , Keator, David B. 53,54,55 , Kiar, Gregory 56 , Kincses, Balint 35,36 , Laird, Angela R. 57 , Lau, Jonathan C. 58 , Lazari, Alberto 59 , Legarreta, Jon Haitz 60 , Li, Adam 61 , Li, Xiangrui 62 ,Love,Bradley C. 63,Lu,Hanzhang 64,Marcantoni,Eleonora 65,Maumet,Camille 66,Mazzamuto,Giacomo67,Meisler 67,Meisler,Steven L. 68,Mikkelsen,Mikkelsen,Mark 69 4,75,Niso,Guiomar 76,Norgaard,Martin 32,37,Okell,Thomas W. 59,Oostenveld,Robert 77,78,Ort,Ort,Eduard 79,Park J. 80,Patrick J. 80,Pawlik,Pallik,Pallik,Mateusz,Mateusz 81,Pernet,Pernet,Pernet,Cyril R.38,Pestilli,Pestilli,Pestilli,Petilli,franco,Petr,Petr,Petr,Jan,Jan 272菲利普斯(Phillips),克里斯托夫(Christophe),83,派恩,让·巴蒂斯特(Jean-Baptiste)84,波罗尼尼(Pollonini),卢卡(Luca)85,86,拉马纳(Raamana),普拉德普·雷迪(Pradeep Reddy),里特(Ritter),佩特拉(Ritter),佩特拉(Petra)88,89,90,91,92,里佐(Rizzo) 99,Routier,Alexandre 100,Saborit-Torres,Jose Manuel 26,Salo,Taylor 101,Schirner,Michael 88,89,90,91,92,Smith,Smith,Robert E. 102,103,Spisak,Spisak,Spisak,Spisak,Tamas,Tamas 35,104,Sprenger,Sprenger,Julia,Julia 105,Swann,Swann,Swann,Swann,Nicole C. C. C. Nicole C. 106 , Szinte, Martin 105 , Takerkart, Sylvain 105 , Thirion, Bertrand 45 , Thomas, Adam G. 32 , Torabian, Sajjad 107 , Varoquaux, Gael 108 , Voytek, Bradley 109 , Welzel, Julius 110 , Wilson, Martin 111 , Yarkoni, Tal 112 , Gorgolewski, Krzysztof J. 1
16单击“导出传播”,然后将此XML文件保存为QVN文件夹中的“ Quickn XML.xml”。*没有自动识别为.xml文件,因此需要将“ .xml”添加到名称的末尾。*单击“导出切片”,如果您需要地图集图像,但这对于工作流程不是必需的,并且会使您的文件夹混乱。
了解神经系统的功能需要绘制其由功能,解剖学或基因表达定义的其组成细胞的空间分布。最近,组织制备和显微镜的发展使整个啮齿动物大脑都可以成像细胞种群。但是,手动映射这些神经元很容易偏见,并且通常不切实际。在这里,我们提出了一种开源算法,用于使用标准台式计算机硬件在鼠标全脑显微镜图像中完全自动化的3D检测神经元somata。我们通过绘制通过通过逆行反式突触病毒感染表达的细胞质荧光蛋白标记的大型细胞的大脑范围来证明我们方法的适用性和功能。
摘要 - 每年,数以百万计的患者在手术过程中恢复意识,并可能患有创伤后疾病。我们最近表明,可以使用脑电图(EEG)信号的中位神经刺激过程中的运动活动检测来提醒医务人员,患者正在醒来并试图在全身麻醉下移动[1],[2]。在这项工作中,我们测量了直接训练对过滤的EEG数据进行训练的多种深度学习模型(EEGNET,深卷积网络和浅卷积网络)的运动图像的准确性和假阳性。我们将它们与有效的非深度方法进行了比较,即基于常见空间模式的线性判别分析,即应用于协方差矩阵的Riemannian Mean Mean Algorithm的最小距离,基于逻辑回归的逻辑回归,这是基于逻辑回归的,这是对协方差矩阵(TSS+LR)的较相关的空间投影。与其他分类器相比,EEGNET显着提高了分类性能的显着提高(p-值<0.01);此外,它的表现优于最佳的非深度clas-sifier(TS+LR),其精度为7.2%。这种方法有望改善全身麻醉期间术中意识检测。
标题:使用NeuroMark PET独立组件分析框架运行:Neuromark Ica Ica Ica Pet Atlas作者:Cyrus Eierud A,Martin Norgaard B,C,Murat Bilgel D,Helen Petropoulos A,Helen Petropoulos A,Zening Fuu a,Zening Fuu A,Armin iraji J.Meran iman gran geran geran gran geran, ,Cyril Pernet H,Vince D. Calhoun A,I,J为阿尔茨海默氏病神经影像学计划*隶属关系:A)神经影像学和数据科学转化研究中心(趋势),乔治亚州立大学,乔治亚州立大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚大学,乔治亚州大学,乔治亚大学。b)美国马里兰州贝塞斯达国立卫生研究院国家心理健康研究所分子成像分支。c)丹麦哥本哈根哥本哈根计算机科学系。d)美国马里兰州巴尔的摩国家老化研究所行为神经科学实验室。e)Karolinska Institutet和斯德哥尔摩县议会临床神经科学系,斯德哥尔摩,SE-171 64,瑞典。f)美国纽约哥伦比亚大学精神病学系。g)美国纽约哥伦比亚大学生物统计学系。h)丹麦哥本哈根Rigshospitalet的神经生物学研究部门。i)美国佐治亚州亚特兰大佐治亚州立大学神经科学研究所和物理学心理学和计算机科学系。j)佐治亚州佐治亚州佐治亚州佐治亚州佐治亚州佐治亚州理工学院电气和计算机工程系 *)用于准备本文的数据是从阿尔茨海默氏病神经影像学计划(ADNI)数据库(ADNI.loni.loni.usc.edu)获得的。因此,ADNI中的调查人员为ADNI和/或提供数据的设计和实施做出了贡献,但没有参与本报告的分析或撰写。可以在:http://adni.loni.usc.edu/wp- content/uploads/how_to_apply/adni_acknowledgement_list.pdf
摘要 - 早期关于脑血管式语义分割的研究使用了经典的图像分析方法来从图像中提取血管树。如今,深入学习的方法已被广泛利用用于各种图像分析任务。在语义细分框架中处理神经网络时的强大限制之一是需要处理地面真理分段数据集,该数据集将在其中学习任务。手动以3D体积(通常为MRA-TOF)手动分割动脉可能很麻烦。在这项工作中,我们旨在从新的角度解决血管树分割。我们的目标是从使用CT扫描的小鼠血管构建图像数据集,并以一种精确模仿人脑的统计特性的方式增强这些血管。由于其特定的采集方式,鼠标图像的分割很容易自动化。因此,这样的框架允许生成培训卷积神经网络所需的数据 - 即增强的鼠标图像和相应的地面真实分割 - 无需任何手动分割程序。但是,为了生成具有一致属性的图像数据集(与MRA图像非常相似),我们必须确保增强鼠标图像的统计属性确实与人类MRA的获取符合正确。在这项工作中,我们详细评估了在MRA-TOF上获得的人动脉与我们模型产生的“人源化”小鼠动脉的相似性。最后,一旦模型进行了正式验证,我们将使用卷积神经网络实验其适用性。