(1) 维数 一般取值 1 或 2 ,当 时,要求数据量 在数千点以上,但 过大不能保证序列具有相同 的性质; 一定时,若 ,需要较大才能取得 较好的效果,但是太大会丢失序列的许多细节信 息。 Pincus [ 14 ] 研究认为 比 效果好,可使 序列的联合概率进行动态重构时提供更详细的信 息。 (2) 用来衡量时间序列相似性的大小。如果 选得太小,估计出的统计概率会不理想;若选得 太大,会丢失时间序列中很多细节,达不到预期的 效果。 Pincus [ 14 ] 通过对确定性和随机过程的理论分 析及其对计算和临床应用的研究,总结出取值为 ( 为原始序列的标准差 ) 能得出有效 的统计特征。 (3) 表示输入数据点,一般取值为 100 ~ 5000 。因此根据上述原则,本文取 , 。根据实验研究发现当 时,不同 状态的脑电信号的样本熵并无太大差异;当 时,不同状态的脑电信号的熵值有明显差异。 因此 取值为 100 。即用长度为 100 点,间隔为 4 点 的滑动窗计算 EEG 在运动想象期 (2 ~ 6 s) 的样本 熵序列,然后求该序列的均值作为该 EEG 的样本 熵。 ERS/ERD 现象主要出现在 C3 和 C4 电极对应的 感觉运动区上,例如,右手运动想象时可观测到 C3 电极对应的感觉运动区 ERD 现象,左手运动想 象时可观测到 C4 电极对应的感觉运动区 ERD 现
脑小血管疾病本质上是阴险的,随着年龄的增长逐渐发展,最终导致患者独立性丧失。先前的研究始终证明了步态障碍与影响认知功能的神经退行性疾病之间的协会。随着成像技术的发展,近年来脑部小血管疾病对步态功能的影响(近年来被忽略的话题)引起了公众的关注。这项艺术对成像检查,发病机理,治疗以及不同类型的脑小血管疾病与步态疾病之间的相关性进行了全面综述。
自2013年脑器官成立以来,有关该主题的研究和讨论成倍增长。他们概括人脑解剖和功能特征的能力引起了全球兴趣。在2013年至2022年之间,平均每月发表了10篇以上文章(1826),其中1/3超过1/3不是原始研究,而是评论(587,Source PubMed)。科学家将脑器官剥削为基础研究,毒性和药物测试的脑模拟工具,并考虑了其潜在的发音和意识。虽然尚未检测到这些脑官的争论特征,但对当前可能的高级应用程序的猜测是令人兴奋的前景。Smionerova等。(1)就其计算和认知能力以及功耗非常低的作用而言,为人脑的至高无上提出了令人信服的案例。将这些参数与最佳计算机进行比较,这些计算机已知具有实质性的碳足迹。他们还为利用脑器官作为生物计算的下一代机械而提出了令人信服的论点。由于这些3D构造可能是人脑的一部分,因此他们认为,与我们的大脑一样,与众不同的不同构造可能会像我们的大脑一样有效。因此,设想了一项跨学科研究计划用于利用–
玛丽·雪莱(Mary Shelley)在1818年写了弗兰肯斯坦(Frankenstein)。欧洲的启蒙运动正在如火如荼地进行,但是科学革命只是出现了。Luigi Galvani(1737–1798)最近证明了电力对解剖动物的作用,而他的侄子Giovanni Aldini(1762-1834)用电力“动画”了人类尸体。在考虑伦理学之前,采用了这种技术,但是公平地说,生物伦理学的纪律不会再过一个半世纪。归雪莱这样的作家创造了叙事,可以通过科学进步的道德含义来帮助社会思考。自玛丽·雪莱(Mary Shelley)出发写她的哥特式恐怖故事以来,世界发生了很大变化。以微妙而深刻的方式操纵生活已经有可能。我们现在有生物伦理学,但是科学进步定期超过我们思考的能力。没有比当前神经生物学研究更清晰的地方。
在"⼤脑与机器"这⼀跨学科领域,通信⼯程的最新进展凸显了神经架构对⼯程进展的影响。这促使⼈们开始探索脑启发计算技术,尤其是⽣物识别(BCI)技 术。这些系统促进了活体⼤脑与外部机器之间的双向通信,能够读取⼤脑信号并将其转换为任务指令。此外,闭环BCI 还能以适当的信号刺激⼤脑。该领域的研 究涉及多个学科,包括电⼦学、光⼦学、材料科学、⽣物兼容材料、信号处理和通信⼯程。低维材料(尤其是⽯墨烯等⼆维材料)的特性进⼀步增强了脑启发电 ⼦学的吸引⼒,这些特性是未来类脑计算设备的基础。在⽣物识别(BCI)领域,通信⼯程在促进⼈脑与计算系统在数字通信、物联⽹、新兴技术、空间和IoX 设 备融合等不同领域进⾏⽆缝信息交换⽅⾯发挥着⾄关重要的作⽤。光⼦学和光⼦集成电路(PIC)是这⼀多学科研究中不可或缺的⼀部分,可为⽣物识别(BCI) 提供⾼速、节能的通信和⼀系列优势,包括⾼速数据传输、低功耗、微型化、并⾏处理和光刺激。这些特性使光⼦学成为⼀项前景⼴阔的技术,可推动脑机接⼝ 的发展,并在神经科学和神经⼯程领域实现新的应⽤。