因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
图S10。 建立用于研究缺血性中风的永久性脑动脉闭塞(PMCAO)模型。 PMCAO手术程序。 CCA,ICA和ECA暴露了,将硅细丝插入CCA和ICA直到到达MCA(有关详细信息的材料和方法)。 用biorender.com创建的数字。 b TTC染色大脑的代表性照片。 白色区域代表PMCAO的梗塞区域。 PMCAO后1、3和6小时,缺血性大脑中SIRT1的mRNA表达水平。 数据表示为折叠变化,相对于假手术组在归一化为GAPDH之后。 误差条表示平均值±S.D. (n = 3)(每组n = 10只小鼠, * p <0.05,*** p <0.001对假手术)。 缩写:CCA,常见的颈动脉; ICA,颈内动脉; ECA,外部颈动脉; MCA,中大脑中动脉; TTC,2,3,5-三苯基四唑氯化物。图S10。建立用于研究缺血性中风的永久性脑动脉闭塞(PMCAO)模型。PMCAO手术程序。CCA,ICA和ECA暴露了,将硅细丝插入CCA和ICA直到到达MCA(有关详细信息的材料和方法)。用biorender.com创建的数字。b TTC染色大脑的代表性照片。白色区域代表PMCAO的梗塞区域。PMCAO后1、3和6小时,缺血性大脑中SIRT1的mRNA表达水平。数据表示为折叠变化,相对于假手术组在归一化为GAPDH之后。误差条表示平均值±S.D.(n = 3)(每组n = 10只小鼠, * p <0.05,*** p <0.001对假手术)。缩写:CCA,常见的颈动脉; ICA,颈内动脉; ECA,外部颈动脉; MCA,中大脑中动脉; TTC,2,3,5-三苯基四唑氯化物。
必须根据每位患者的临床表现进行量身定制。许多因素都有助于取得积极的 DBS 效果,包括精心选择患者、放置导线和有效编程(6)。只有 DBS 编程可以在患者植入后进行修改,因此,DBS 编程在改善临床结果方面起着至关重要的作用(7)。尽管如此,30 年来,编程一直是一个手动且耗时的过程,需要训练有素且经验丰富的临床医生才能使每位患者获得最大的治疗效果(8、9)。在随访期间通常会组织其他课程来处理刺激引起的副作用(例如,言语问题和刺激引起的运动障碍)或潜在帕金森病的恶化。虽然这些重新编程课程的效用已得到充分证实,但尚无指导方针,而且大多数这些变化依赖于少数开放标签研究的结果(10-12)。事实上,尽管DBS已应用近三十年,但目前仍缺乏系统的编程协议,导致刺激调整不一致且效率低下,以及患者多次或不必要的就诊。本中心利用图像重建技术重建核和电极,并以此指导编程,取得了满意的效果。
序列效应在帕金森病中随时间推移而恶化,并对开环和闭环丘脑底核深部脑刺激有反应 Yasmine Kehnemouyi a,b *、Matthew Petrucci a,b *、Kevin Wilkins a、Helen Bronte-Stewart a,ca 斯坦福大学医学院,神经病学和神经科学系,b 斯坦福大学工程学院,生物工程系 c 斯坦福大学医学院,神经外科系,斯坦福,加利福尼亚州,美国 *与第一作者贡献相同
近年来,病毒感染到造成损害的时间间隔有变得越来越短的趋势。由于EDR产品仅处理事后的病毒感染,因此有时无法防止损害。 首先,将您的防病毒软件更新到最新版本。这是防止攻击的第一步。
全脑脑是复杂的大脑畸形,这是由于早期胎儿发育过程中大脑不完全的裂解而导致的。这种情况的特征在于普罗德龙(胚胎的前脑)的失败,以正确分成大脑半球的双叶,导致影响大脑和面部特征的异常。根据大脑分裂的严重程度,全脑脑分为四种类型:Alobar Holoporsencephaly:最严重的形式,其中没有脑半球分离,导致单个脑室心室和一个单裂脑。半月骨全脑脑:大脑半球部分分离,大脑的结构在某种程度上介于Alobar和Lobar之间。Lobar Holoporsencephaly:最少的严重形式,具有更好的脑半球分离和更正常的大脑结构。中半球间变体(syntelcephaly):半球在大脑中间没有分离,但可能在前和后方面更正常地分裂。是什么导致全脑脑?
摘要 脑信号解码有望在临床脑机接口 (BCI) 的发展中取得重大进展。在帕金森病 (PD) 中,目前已有首个用于自适应深部脑刺激 (DBS) 的双向 BCI 植入物。脑信号解码可以扩展自适应 DBS 的临床实用性,但神经源、计算方法和 PD 病理生理对解码性能的影响尚不清楚。这代表了未来神经技术发展中尚未满足的需求。为了解决这个问题,我们开发了一种基于术中感觉运动皮层电图 (ECoG) 和丘脑底 LFP 的侵入性脑信号解码方法来预测 11 名接受 DBS 的 PD 患者的握力(一种代表性的运动解码应用)。我们证明 ECoG 优于丘脑底 LFP,可准确解码握力。梯度增强决策树 (XGBOOST) 优于其他模型架构。基于 ECoG 的解码性能与运动障碍呈负相关,这可归因于运动准备和运动期间的丘脑底 β 爆发。这凸显了帕金森病病理生理对神经编码运动活力能力的影响。最后,我们开发了一种连接组分析,可以通过使用患者的连接组指纹来预测患者个体 ECoG 通道的握力解码性能。我们的研究为侵入性脑信号解码提供了一个神经生理学和计算框架,以帮助开发个性化的智能自适应 DBS 精准医疗方法。
目的:通过分析脑活动来区分帕金森病静止性震颤和不同的自主手部运动。方法:我们重新分析了 6 名帕金森病患者的丘脑底核的脑磁图和局部场电位记录。数据是在停用多巴胺药物(Med Off)和服用左旋多巴(Med On)后获得的。使用梯度提升树学习,我们将时间段分类为震颤、握拳、前臂伸展或无震颤静止。结果:单独的丘脑底核活动不足以区分四种不同的运动状态(平衡准确度平均值:38%,标准差:7%)。相比之下,皮质和丘脑底核特征的组合可以实现更准确的分类(平衡准确度平均值:75%,标准差:17%)。与仅基于丘脑底活动的分类相比,添加单个皮质区域平均可将平衡准确度提高 17%。在大多数患者中,信息量最大的皮质区域是感觉运动皮质区域。Med On 和 Med Off 下的解码性能相似。结论:只要除了丘脑底活动外还监测皮质信号,电生理记录就可以区分几种运动状态。意义:通过结合皮质记录、皮质下记录和机器学习,自适应深部脑刺激系统可能能够特异性地检测震颤并对几种运动状态做出充分反应。2023 年国际临床神经生理学联合会。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
据估计,超过三分之二的赫布里底群岛是在任职期(约6,000个克罗夫特人),而这些岛屿现在在社区土地所有权下拥有很大比例的土地和人口。在2012年4月至2017年3月的五年中,赫布里底外的住房完成总数为434,大约61%的住房由私人房屋建造组成。由于当前的财务环境和面临的困难,例如获得抵押贷款,高建造成本,预计接下来的5年期可能会进一步减少私人房屋完成数量。外赫布里底群岛的空置住房百分比最高,为8.3%,第二居所的第二高百分比为5.4%。