未来市场发展潜力巨大,鼓励政策频出,应用场景广阔。市场端:据麦肯锡2020年研究报告显示,2030-2040年脑机接口全球 每年的市场规模可能在700亿到2000亿美元之间;政策端: 2024 年 1 月,工信部等七部门发布《关于推动未来产业创新发展 的实施意见》,突破脑机融合、类脑芯片、大脑计算神经模型等关键技术和核心器件,研制一批易用安全的脑机接口产 品,鼓励探索在医疗康复、无人驾驶、虚拟现实等典型领域的应用 ;应用端:科研实验平台重视神经创新技术的的研发,具 有交叉融合特色实验支撑的能力。神经影像技术研发、神经计算软件研发、神经电子技术研发等多方面神经技术的研发,对神经 感知、神经调控和神经计算的研究提供技术支持,开展以脑疾病诊治与康复为核心的重大基础科学问题和智能决策、人机交互等 关键技术应用基础研究,布局神经数字疗法、神经电子药物和智能神经康复三个研究方向。
甘 迪,黄 辉,李承智,等 .脑机接口对义指精细动作控制的研究进展 [ J ] .中国临床医学 , 2025, 32(1): 114-119.GAN D, HUANG H, LI C Z, et al.Advances in research on fine motion control of prosthesis fingers with brain-computer interface [ J ] .Chin J Clin Med, 2025, 32(1): 114-119.DOI: 10.12025/j.issn.1008-6358.2025.20241119
注意:1。使用9.1 25的转化系数,根据60千克加权人类的表面积,将小鼠研究中使用的剂量缓解。小鼠的每日剂量为3.79 g/kg,衍生自9.1的配方量乘以每60千克25 g。每个啮齿动物的喂养体积为每公斤体重20毫升。2。粉末,酸奶和牛奶混合物是根据既定的食物标准制备的。组合(Th+WP)引入混合物中,然后在指定比例中添加蒸馏水。3.我们测试了三个浓度的组合(TH + WP)(85 + 200 mg/ml,170 + 200 mg/ml,170 + 400 mg/ml)。在这三组之间没有观察到没有显着差异,因此我们选择了最低
使用代码调节的诱发潜力(C-VEP)对脑部计算机界面(BCIS)进行研究,最近取得了显着的进步(Martínez-Cagigal等,2021)。这些突破归因于刺激协议的复杂设计和创新的解码技术,它们共同建立了基于C-DEP的BCIS作为通信和控制应用程序的当前最新技术。该研究主题旨在通过促进原始贡献来推动领域的前进,并特别着眼于提高C-DEP驱动的BCI系统的可用性,可靠性和实用性。的目标是更加关注这一新兴领域,尽管它取得了显着的成就,但仍需要在临床环境和日常生活中促进这些技术的广泛采用。C-VEP刺激方案与其他主要类别的诱发反应明显不同,例如与事件相关的电位(ERP)和稳态视觉诱发的潜力(SSVEP)(Martínenez-Cagigal等人,2021年)。ERP协议通常基于奇数范式,其速度要慢得多,典型的刺激发作异步(SOA)约为250 ms(4 Hz),而C-vep中使用的至少16 ms(60 Hz)的速度相比。同样,尽管与ERP相比,SSVEP范式也相对较快,但SSVEP协议依赖于频率的方法,在这种方法中,刺激仅限于具有特定频率和相位的周期性信号。相比之下,C-VEP协议采用了噪声方法,允许更广泛的刺激序列(包括非周期性模式),同时还表现出对窄带干扰的更大弹性。此外,最近的证据表明,从信息理论的角度来看,在基于C-DEP的BCIS中,可以通过视觉诱发的途径达到的最大信息传输速率显着超过了基于SSVEP的系统(Shi等,2024)。
a 哈尔滨工业大学计算机科学与技术学院,哈尔滨,中国 b LINEACT CESI,里昂 69100,法国 c 埃法特大学电气与计算机工程系,吉达 22332,沙特阿拉伯 d Persistent Systems Limited,那格浦尔,印度 e AGH 科技大学生物控制论与生物医学工程系,克拉科夫,波兰 f 克拉科夫理工大学计算机科学与电信学院计算机科学系,华沙 24,31-155,克拉科夫,波兰 g 波兰科学院理论与应用信息学研究所,Ba ł tycka 5,44-100,格利维采,波兰 h EIAS 数据科学实验室,苏丹王子大学计算机与信息科学学院,利雅得 11586,沙特阿拉伯 i 梅努菲亚大学理学院数学与计算机科学系,32511,埃及j 埃及梅努菲亚大学计算机与信息学院信息技术系
脑机接口于五十年前出现,是一种新的通信技术,允许患有严重神经肌肉疾病的患者与外界进行交流和互动。无线技术的快速发展为实验室外的应用打开了大门,例如娱乐、工业、营销和教育领域。越来越多的脑机技术新应用正在涌现,包括物联网。本期特刊将探讨非侵入式和侵入式脑机接口技术的进展、挑战和未来前景。发行范围包括但不限于:BCI 技术、生物医学信号分析、建模 - 神经信息学、生物医学工程、控制和机器人技术、计算机工程、认知科学 - 生物伦理学、神经生物学 - 神经外科、神经康复 - 生物反馈、生物物理学 - 生物化学。
和许多研究领域的情况一样,脑机接口 (BCI) 领域数据共享仍然很少,尤其是在被动 BCI 领域——即基于从脑部测量估计的用户心理状态实现隐性交互或任务调整的系统。此外,该领域的研究目前面临一个重大挑战,即解决脑信号变异性,例如跨会话变异性。因此,为了在该领域发展良好的研究实践,并使整个社区能够联合起来进行跨会话估计,我们创建了第一个关于跨会话工作量估计的被动脑机接口竞赛。本次竞赛是第三届国际神经人体工程学会议的一部分。数据是从 15 名志愿者(6 名女性;平均 25 岁)获得的脑电图记录,他们进行了 3 次多属性任务组合 II (MATB-II) 测试,每次测试间隔 7 天,每场测试有 3 个难度级别(伪随机顺序)。数据(训练和测试集)与 Matlab 和 Python 玩具代码一起在 Zenodo 上公开提供(https://doi.org/10.5281/zenodo.5055046)。到目前为止,该数据库的下载次数已超过 900 次(2021 年 12 月 10 日所有版本的独立下载次数:911)。来自 3 大洲的 11 个团队(31 名参与者)提交了他们的作品。表现最好的处理流程包括基于黎曼几何的方法。虽然结果优于调整后的随机水平(对于 3 类分类问题,α 为 0.05,结果为 38%),但准确率仍然低于 60%。这些结果清楚地强调了跨会话估计的真正挑战。此外,它们再次证实了黎曼方法对 BCI 的稳健性和有效性。相反,三分之一的方法(4 个团队)基于深度学习获得了随机水平结果。与传统方法相比,这些方法在本次比赛中没有表现出更优的结果,这可能是由于严重的过度拟合。然而,这次比赛是共同努力解决 BCI 变异性并促进包括可重复性在内的良好研究实践的第一步。
摘要 — 本文介绍了一种新的迁移学习方法,即群组学习,它可以联合对齐多个域(多对多),以及一种扩展方法,即快速对齐,它可以将任何其他域与先前对齐的域组对齐(多对一)。在脑机接口 (BCI) 数据上评估了所提出的组对齐算法 (GALIA),并研究了该算法的最佳超参数值以了解分类性能和计算成本。使用了六个公开的 P300 数据库,包含来自 177 个受试者的 333 个会话。与传统的针对特定受试者的训练/测试流程相比,群组学习和快速对齐均显著提高了分类准确率,但临床受试者的数据库除外(平均改进:2.12±1.88%)。GALIA 利用循环近似联合对角化 (AJD) 来找到一组线性变换,每个域一个,联合对齐所有域的特征向量。群组学习实现了多对多迁移学习,同时不会损害非临床 BCI 数据的分类性能。快速对齐进一步扩展了任何未见域的群组学习,从而允许具有相同属性的多对一迁移学习。前一种方法使用来自先前受试者和/或会话的数据创建单个机器学习模型,而后一种方法利用训练后的模型来处理未见域,无需进一步训练分类器。
脑机接口 (BCI) 是一种不依赖于大脑周围神经和肌肉正常输出通路的通信系统。无线脑机接口 (WBCI) 系统是 BCI 系统的一个分支,它采用一种独特的方法来获取大脑的电活动,即脑电图 (EEG),使用有效的非侵入式植入电极方案,并采用无线通信方案传输获取的 EEG 进行进一步处理。五个最重要的安全和隐私问题是身份验证、访问控制、恶意行为、加密和通信。通过在 6G 技术背景下适当实施无线 BCI,本章全面概述了 WBCI 和 6G 技术,并概述了基于人工智能的方案在解决因 6G 网络部署到围绕 WBCI 的环境中而产生的安全和隐私问题方面的效用。