研究成果概要(中文):在本研究中,我们旨在开发一种使用 P300 和稳态视觉诱发电位 (SSVEP) 的混合型输入系统,这两种技术在利用脑电图进行字符输入时被广泛使用。该系统发挥了 P300 和 SSVEP 的优势,并弥补了彼此的不足。首先,我们通过视觉刺激呈现建立了一种同时生成方法。接下来,利用呈现方法,我们确认可以通过控制候选字符的呈现时间来有效分离两种不同的脑电图。我们已经证明,我们的原创方法可以实现高速输入。然而,差异程度因对象而异。这是未来需要解决的一个挑战。
摘要这项研究的主要目的是通过开发包括脑部计算机界面(BCI)和客户端Vidinexus的互动屏幕在内的原型来探索以改善博物馆访问者的体验和参与的选项。这是通过遵循重点关注研究的三个不同方面的方法来完成的;博物馆和艺术,BCI和原型。前两个方面是背景文献研究的重点。这些发现用于指导原型开发的创作过程。系统的原型,包括交互式测验,它根据由EEG设备测量的选择和参与水平与访问者相匹配。该原型是在研究的构想,规范和实现阶段创建的;并在评估阶段进行了测试。
抽象虚拟现实(VR)是一项允许用户体验模拟真实或虚构场景的多感觉和交互式环境的技术。仍然辩论了不同的VR沉浸式技术神学对心理工作量(MWL)的影响,即执行任务所需的资源数量;但是,从未利用脑电图在这种情况下的潜在作用。本文旨在调查在VR环境中对MWL进行认知任务的影响,这是通过使用多模式的方法进行的,其特征在于以不同程度的沉浸式来进行,这些方法通过生理EEG测量对MWL进行了良好评估的主观评估。提出了基于N-BACK测试的认知任务,以比较使用头部安装显示器(HMD)或桌面计算机展示Stim uli的特定裤子的性能和MWL。任务具有四个不同的复杂度(N¼1或2具有视觉或视觉和听觉刺激)。二十七名健康参与者都参加了这项研究,并在两种情况下都执行了任务。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。 错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。 任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。 EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG MWL指数显示出显着增加,特别是与休息相比。不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。但是,在大多数情况下,HMD降低了EEG衍生的MWL,表明较低的认知负载。总而言之,HMD可能会减少某些任务的认知负担。如脑电图MWL指数所示,MWL的降低水平可能对基于VR的应用程序的设计和未来评估有影响。
神经科学的当前趋势是使用自然主义刺激,例如电影,课堂生物学或视频游戏,旨在在生态上有效的条件下了解大脑功能。自然主义刺激招募复杂和重叠的认知,情感和感觉脑过程。大脑振荡形成了此类过程的基本机制,此外,这些过程可以通过专业知识来修改。尽管大脑作为生物系统是高度非线性的,但通常通过线性方法分析人类皮质功能。这项研究应用了一种相对健壮的非线性方法,即Higuchi分形维度(HFD),将数学专家和新手的皮质功能分类为在脑电图实验室中解决长期且复杂的数学示范。脑成像数据是在自然主义刺激期间长期跨度收集的,可以应用数据驱动的分析。因此,我们还通过机器学习算法探讨了数学专业知识的神经标志。需要新颖的方法来分析自然主义数据,因为基于还原主义和简化研究设计的现实世界中脑功能的理论的表述既具有挑战性又可疑。数据驱动的智能方法可能有助于开发和测试有关复杂大脑功能的新理论。我们的结果阐明了HFD在复杂数学期间对数学专家和新手分析的不同神经签名,并将机器学习作为一种有前途的数据驱动方法,以了解专业知识和数学认知的大脑过程。
抽象虚拟现实(VR)是一项允许用户体验模拟真实或虚构场景的多感觉和交互式环境的技术。仍然辩论了不同的VR沉浸式技术神学对心理工作量(MWL)的影响,即执行任务所需的资源数量;但是,从未利用脑电图在这种情况下的潜在作用。本文旨在调查在VR环境中对MWL进行认知任务的影响,这是通过使用多模式的方法进行的,其特征在于以不同程度的沉浸式来进行,这些方法通过生理EEG测量对MWL进行了良好评估的主观评估。提出了基于N-BACK测试的认知任务,以比较使用头部安装显示器(HMD)或桌面计算机展示Stim uli的特定裤子的性能和MWL。任务具有四个不同的复杂度(N¼1或2具有视觉或视觉和听觉刺激)。二十七名健康参与者都参加了这项研究,并在两种情况下都执行了任务。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。 错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。 任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。 EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG数据和NASA任务负荷指数(NASA-TLX)分别用于评估客观和主观MWL的变化。错误率(ER)和反应时间(RTS)也针对每个条件和任务水平进行了COL。任务水平在两种情况下都对MWL产生了重大影响,增加了次级措施和降低性能。EEG MWL指数显示出显着增加,特别是与休息相比。 不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。EEG MWL指数显示出显着增加,特别是与休息相比。不同程度的沉浸式均未显示个人的表现和MWL的显着差异,如主观评分所估计。但是,在大多数情况下,HMD降低了EEG衍生的MWL,表明较低的认知负载。总而言之,HMD可能会减少某些任务的认知负荷。如脑电图MWL指数所示,MWL的降低水平可能对基于VR的应用程序的设计和未来评估有影响。
直到最近,研究人员主要对阅读中的人类行为数据感兴趣,以了解人类认知。然而,这些人类语言处理信号也可以用于基于机器学习的自然语言处理任务。目前,将脑电图大脑活动用于此目的的研究还很大程度上尚未得到探索。在本文中,我们首次进行了大规模研究,系统地分析了脑电图大脑活动数据在改进自然语言处理任务方面的潜力,特别关注了信号的哪些特征最有益。我们提出了一种多模态机器学习架构,它可以从文本输入和脑电图特征中联合学习。我们发现将脑电图信号过滤到频带中比使用宽带信号更有益。此外,对于一系列词嵌入类型,脑电图数据可以改进二元和三元情绪分类,并且优于多个基线。对于关系检测等更复杂的任务,在我们的实验中,只有情境化的 BERT 嵌入优于基线,这提出了进一步研究的需要。最后,当训练数据有限时,EEG 数据显示出特别有前景。
摘要 脑机接口 (BCI) 是一种将大脑活动转化为操作技术命令的系统。脑电图 (EEG) BCI 的常见设计依赖于 P300 事件相关电位 (ERP) 的分类,这是一种由常见非目标刺激中罕见的目标刺激引起的反应。现有的 ERP 分类器很少直接探索神经活动的潜在机制。为此,我们对 P300 ERP-BCI 设计下的多通道真实 EEG 信号的概率分布进行了新颖的贝叶斯分析。我们的目标是识别神经活动的相关时空差异,这为 P300ERP 反应提供了统计证据,并有助于设计高效、准确的个性化 BCI。作为我们对单个参与者分析的一项重要发现,视觉皮层周围通道的目标 ERP 在刺激后约 200 毫秒达到负峰值的后验概率为 90%。我们的分析确定了 BCI 拼写器的五个重要通道(PO7、PO8、Oz、P4、Cz),从而实现了 100% 的预测准确率。从对其他九名参与者的分析中,我们一致地选择了确定的五个通道,并且选择频率对带通滤波器和内核超参数的微小变化具有稳健性。本文的补充材料可在线获取。
我们还建议您填写自闭症友好问卷,以准备就诊。如果您在填写 MyChart 中的表格时遇到困难,那么您可以从我们的网站下载纸质副本,并在预约时随身携带。详情请查看二维码。
摘要 — 随着神经工程技术的快速发展,社会对数字心理健康的需求也迅速上升。虽然社会需要利用基于可靠神经科学证据的尖端技术,但准确性和易用性的权衡严重分裂了学术界和工业界。在这里,我们提供模拟和经验证据来揭示头皮上脑电图电极的位置和数量如何影响捕获头皮范围独立成分 (IC) 的准确性。基于从 64 通道脑电图电极获得的 IC 的逆权重头皮地形,对现有的七个脑电图耳机的数量和位置进行了空间相似性分析。结果显示,随着通道数量和位置的增加,相似性呈现出独特的 S 形恶化。我们提供了一个有用的计算模型,用于量化特定耳机的假设质量。我们的量化方法为学术可靠性和社会需求之间的竞争提供了和解,这是 BCI(脑机接口)应用中的一个基本方面。
I.近年来,生物识别技术在日常生活中越来越多地使用。例如,在使用图形和面对图像登录智能手机中。但是,这种生物特征数据始终涉及身体表面。因此,可以使用数字设备(例如摄像机)轻松地被盗(捕获)。If the data are stolen, copies can be made.此外,填充和脸部识别假定仅一次性身份验证,这会导致SPOOFG的风险。使用其生物识别技术对系统的常规用户进行身份验证,即使用户被没有使用该系统许可的冒名顶替者替换,也无法根据一次性的身份验证使用生物识别方法检测SPOOFEF。为了解决这个问题,已经提出了连续的身份验证,因为它比一次性的身份验证更有效。作为适合连续身份验证的生物识别技术,脑波或脑电图(EEG)引起了人们的注意[1]。只要人还活着,信号总是会产生,因此可以连续测量此信息。此外,由于任何人都可以利用脑波,它们是最容易获得的生物识别数据。由于仅在人戴上脑波传感器时才能检测到脑波,因此其他人也无法秘密地窃取数据。但是,传统研究并未提及使用脑电波作为生物识别技术的应用。使用脑波需要用户佩戴脑波传感器,但是这需要时间,因为用户在移动头发的同时将许多电极设置在头皮上。例如,当用户输入房间,登录PC或使用ATM时,这是无法想象的。因此,作为生物识别技术的脑波不适用于一次性身份验证。另一方面,一旦用户佩戴
