摘要 使用人工智能从 MRI 图像中检测和描绘脑肿瘤是医学 AI 面临的一项复杂挑战。最近的进展见证了各种技术被用于协助医疗专业人员完成这项任务。尽管机器学习算法在分割肿瘤方面很有效,但它们在决策过程中缺乏透明度,阻碍了信任和验证。在我们的项目中,我们构建了一个可解释的 U-Net 模型,专门用于脑肿瘤分割,利用梯度加权类激活映射 (Grad-CAM) 算法和 SHapley 加法解释 (SHAP) 库。我们依靠 BraTS2020 基准数据集进行训练和评估。我们采用的 U-Net 模型产生了有希望的结果。然后,我们利用 Grad-CAM 在图像中可视化模型关注的关键特征。此外,我们利用 SHAP 库来阐明用于预测患者生存天数的各种模型(包括随机森林、KNN、SVC 和 MLP)的预测,从而增强了可解释性。
摘要 – 精确和新颖的脑癌 MR 图像处理在决策和患者治疗决策中发挥着重要作用。MR 图像处理中的关键挑战是 X 射线设备捕获的低级视觉数据与人类评估者看到的高级数据之间的语义差距。传统的系统控制模型仅适用于低级或高级技能,使用一些手工定制的元素来缩小这个差距,并且需要精确的元素提取和分类方法。深度学习的最新进展表明,深度学习取得了巨大进步,并且深度学习卷积神经网络 (CNN) 已在图像分类项目中占据主导地位。深度学习对于特征描述非常有用,它可以完整地描述低级和高级数据,并将元素提取和分类部分植入自我意识中,但总体上需要巨大的训练数据集。对于大多数深度学习情况,训练数据集很小,因此,在小数据集上练习深度学习和训练 CNN 是一项艰巨的任务。针对这一问题,我们使用了预训练的深度 CNN 模型。我们的方法更稳定,因为它不使用任何精心构建的技能,只需要很少的预处理,并且可以在 5 次重叠移动验证下获得 95.51% 的平均精度。我们不仅使用传统的机器学习来测试我们的结果,而且还使用 CNN 的深度学习技术来测试我们的结果。试验结果表明,我们提出的方法在 MRI 数据集上超越了现代类别
近年来,机器学习算法在图像识别任务中取得了巨大成功,与此同时,电子病历和诊断成像的使用也急剧增加。本综述介绍了应用于医学图像分析的机器学习算法,重点介绍了卷积神经网络,并强调了该领域的临床方面。在医学大数据时代,机器学习的优势在于,可以通过算法发现数据中重要的层次关系,而无需费力地手工处理特征。我们涵盖了医学图像分类、定位、检测、分割和配准的关键研究领域和应用。最后,我们讨论了研究障碍、新兴趋势和可能的未来方向。
摘要 - 该项目的目标包括定位脑肿瘤和加强对患者的护理。肿瘤是异常细胞生长,恶性肿瘤是异常细胞生长。CT 和 MRI 这两种扫描类型经常检测受感染的脑组织。诊断脑肿瘤采用了许多其他技术,其中一些包括分子检测和血液或淋巴动脉的正电荷成像。为了识别肿瘤等疾病原因,本文将使用各种 MRI 图像。本研究论文的主要目标是 1) 识别不规则的样本照片和 2) 定位肿瘤区域。为了实施适当的治疗,照片的异常部分将预测肿瘤的程度。从示例照片中,深度学习用于识别异常区域。本研究将使用 VGG-16 对异常部分进行分割。恶性像素的数量决定了受污染区域的范围。
● 校园里有多少残疾学生?有多少人已经毕业? ● 该计划的目标和目的是什么? ● 你们的导师是否使用过残疾人办公室? ● 提供哪些服务?服务是否单独收费? ● 如何确定服务期限?是一个学期?一年?两年还是更长? ● 服务提供者接受过哪些残疾方面的专门培训? ● 安排学术住宿需要哪些残疾记录或文件?记录必须是多近的? ● 学校是否会提供我(学生)需要的特定住宿? ● 是否有残疾学生无法选择的课程? ● 是否有残疾学生必须参加的课程? ● 我(学生)可以在第一年或第二年修读少于全部课程的课程吗? ● 残疾学生可以每学期先注册吗? ● 辅导和/或咨询是一对一还是以小组形式提供的? ● 是否有支持小组? ● 教师或管理人员愿意为残疾学生做出哪些修改? ● 你们为视力受损的人提供哪些便利?为听力受损的人提供哪些便利?● 我需要一对一的助手。这所学校提供这种服务吗?
脑肿瘤的特征是脑组织异常生长,因其对全球发病率和死亡率的影响而成为一项重大的医学挑战。脑肿瘤有多种表现形式,从良性到恶性,后者尤其具有侵袭性且易于转移 (1)。脑肿瘤的病因复杂,包括放射线暴露、遗传易感性和家族史等因素,因此需要早期发现和准确诊断 (2)。在脑肿瘤诊断领域,磁共振成像 (MRI) 因其更高的空间分辨率和软组织对比度而成为优于计算机断层扫描 (CT) 的检查方式。这使得 MRI 成为脑肿瘤病例术前评估、治疗管理和生存预测所必需的 (3)。然而,MRI 扫描中传统的手动分割方法虽然是黄金标准,但却存在固有的效率低下和主观差异性,因此有必要探索自动化技术 (4、5)。近年来,深度学习模型(例如 Ma 等人提出的模型)在自动脑肿瘤分割方面取得了重大成功。这些模型擅长捕捉局部和全局上下文特征,但通常会遇到梯度消失和过拟合的问题,尤其是在较深的网络层中。Kumar 等人(7)通过将 ResNet50 与全局平均池化相结合来解决这些问题,以增强各种肿瘤类型的肿瘤分类。在此基础上,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。
1纳赫兰大学应用医学科学学院,纳吉兰大学61441,沙特阿拉伯2计算机科学系,萨希瓦尔校园,萨希瓦尔校园,伊斯兰堡伊斯兰堡57000,萨希瓦尔57000纳杰兰大学,纳吉兰大学,纳吉兰61441,沙特阿拉伯5计算机科学系,计算机科学与信息系统学院,纳吉兰大学,纳吉兰大学,纳吉兰61441,沙特阿拉伯6 61441 6放射科学系,应用医学科学系,塔布克大学,塔布克大学,塔布克47512,塔布克大学ah.alghamdi@ut.edu.sa 7诊断放射科技术系,应用医学科学学院,泰巴大学,麦地那42353 42353,沙特阿拉伯8纳吉兰大学计算机科学与信息系统学院,纳吉兰大学,纳吉兰大学,纳吉拉兰61441,纳伊·阿拉伯 *,萨特阿拉伯 *通讯。
简介:这项工作的目的是使用计算智能技术对磁共振成像(MRI)图像进行检测和分类。材料和方法:3264个MRI脑图像的数据集包含4类:未指定的神经胶质瘤,脑膜瘤,垂体和健康的大脑,在本研究中使用。Twelve convolutional neural networks (GoogleNet, MobileNetV2, Xception, DesNet-BC, ResNet 50, SqueezeNet, ShuffleNet, VGG-16, AlexNet, Enet, EfficientB0, and MobileNetV2 with meta pseudo-labels) were used to clas- sify gliomas, meningiomas, pituitary tumours, and healthy brains找到最合适的模型。典范包括图像预处理和超参数调整。根据每种类型的脑肿瘤的准确性,精度,召回和F量表来评估每个神经网络的性能。结果:实验结果表明,MobilenetV2循环神经网络(CNN)模型能够以99%的精度,98%的召回率和99%的F1得分来诊断脑肿瘤。另一方面,验证数据分析表明,CNN模型Googlenet在CNN中的精度最高(97%),并且似乎是脑肿瘤分类的最佳选择。结论:这项工作的结果强调了人工智能和机器学习对脑肿瘤预测的重要性。此外,这项研究达到了迄今为止脑肿瘤分类中最高的确定性,这也是唯一一项同时比较许多神经网络的性能的研究。
脑肿瘤是一组异质的肿瘤群,最常见的是神经胶质瘤,其行为范围不同,与对最恶性的,胶质母细胞瘤的多形性相对良好。由于其在中枢神经系统中的微环境引起的,并且由于存在血脑屏障,血脑脊髓液屏障和血液 - 肿瘤屏障,因此与全身循环中很好地分离了脑肿瘤。因此,全身治疗主要是没有成功的。但是,脑肿瘤不再具有与几年前相同的预后。手术的改善可以与这种观点以及其他创新疗法以及手术结合使用。有针对性疗法的可能性(避免正常的组织和破坏肿瘤细胞)正在改变神经肿瘤学的领域,对不久的将来对恶性脑肿瘤的治疗产生了重大影响。本期特刊旨在关注神经肿瘤学,靶向和免疫疗法,临床研究特定开放临床试验和构成评论的新颖方面。
如果我患有或患有脑肿瘤,我和我的家人应该看到遗传咨询师吗?遗传辅导员会向您询问您的个人和医疗家族病史,并查看您的病历。一位遗传辅导员随后与您讨论基因测试选择。这些包括:•诊断测试以证实罕见的肿瘤类型和可能的肿瘤亚型。•预测性或症状前基因检测,以确定何时怀疑某些类型的癌症和基因突变。•携带者筛选以确定个体是否是某些遗传疾病的携带者。