脑血管疾病是全球死亡的主要原因之一,但是,迄今为止,预防或治疗这些疾病几乎没有取得进展。转化的生长因子-β(TGF-β)信号通路在脑血管发育和稳态中起着至关重要且高度复杂的作用,并且TGF-β信号失调会导致脑血管疾病。在这篇综述中,我们提供了概述TGF-β信号在生理和病理条件下脑血管系统中的功能作用。我们讨论了脑血管生成中TGF-β信号传导的当前理解和脑血管稳态的维持。我们还回顾了TGF-β信号传导触发或促进脑血管疾病进展的机制。最后,我们训练会讨论靶向TGF-β信号传导以治疗脑血管疾病的潜力。
在正常健康衰老过程中,通常会出现大脑皮层变薄和脑血流 (CBF) 减少。然而,基于成像的年龄预测模型主要使用大脑的形态特征。互补的生理 CBF 信息可能会改善年龄估计。在本研究中,对 146 名成年期的健康参与者获取了 T1 加权结构磁共振成像和动脉自旋标记 CBF 图像。分割出 68 个大脑皮层区域,计算每个区域的皮层厚度和平均 CBF。计算每个区域和数据类型与年龄的线性回归,并计算侧向性和相关矩阵。使用皮层厚度和 CBF 数据以及两种数据类型的组合训练了 16 个预测模型。年龄解释的皮层厚度数据 (平均 R 2 为 0.21) 中的方差比 CBF 数据 (平均 R 2 为 0.09) 中的方差更大。所有 16 个模型在结合两种测量类型并使用特征选择时的表现都明显更好,因此,我们得出结论,纳入 CBF 数据会略微改善年龄估计。2020 Elsevier Inc. 保留所有权利。
结果对于 4 岁以下儿童,随机分配到 NEWSUP 组与对照组相比,工作记忆有所增加(率比 1.20,95% 置信区间 1.02 至 1.41,P=0.03),并且对于符合方案的人群的影响更大(1.25,1.06 至 1.47,P=0.009)。与对照餐相比,NEWSUP 还增加了贫血儿童的血红蛋白浓度(调整后平均差异 0.65 g/dL,95% 置信区间 0.23 至 1.07,P=0.003),与 FBF 相比,体重指数 z 得分增益降低(-0.23,-0.43 至 -0.02,P=0.03),并且瘦肉组织增量(2.98 cm 2 ,0.04 至 5.92,P=0.046)且脂肪减少(-5.82 cm 2 ,-11.28 至 -0.36,P=0.04)。此外,与对照餐和两个年龄组的 FBF 相比,NEWSUP 增加了 CBF i(1.14 mm 2 /s×10 -8 ,0.10 至 2.23,两项比较均为 P=0.04)。对于 4 岁及以上的儿童,NEWSUP 对工作记忆或贫血没有显著影响,但与 FBF 相比,其瘦肉组织有所增加(4.31 cm 2 ,0.34 至 8.28,P=0.03)。
动机:精确的脑血管形态模型是建模和模拟现实血管网络中脑血流的关键。这种计算机模拟方法对于揭示神经血管耦合原理至关重要。验证这些血管形态需要执行某些无法通过通用可视化框架完成的视觉分析任务。这一限制对模拟中使用的血管模型的准确性有很大影响。结果:我们提出了 VessMorphoVis,这是一套集成的工具箱,用于交互式可视化和分析庞大的脑血管网络,这些网络由最初从成像或显微镜堆栈中分割出来的形态图表示。我们的工作流程利用了 Blender 的出色潜力,旨在建立一个集成的、可扩展的、特定领域的框架,该框架能够交互式可视化、分析、修复、高保真网格划分和高质量渲染血管形态。根据用户的初步反馈,我们预计我们的框架将成为未来血管建模和模拟的重要组成部分,填补目前尚未填补的空白。 可用性和实施:VessMorphoVis 在 Github 上可根据 GNU 公共许可证免费获取,网址为 https://github.com/BlueBrain/VessMorphoVis。形态分析、可视化、网格划分和渲染模块是基于其 Python API(应用程序编程接口)作为 Blender 2.8 的附加组件实现的。用户可以通过直观的图形用户界面使用附加功能,也可以通过以后台模式运行 Blender 的功能丰富的命令行界面调用 API 的详尽配置文件使用附加功能。 联系方式:marwan.abdellah@epfl.ch 或 felix.schuermann@epfl.ch 补充信息:补充数据可在 Bioinformatics 在线获取。
Adam Hilbert 1 , Vince I. Madai 1,2 , Ela M. Akay 1 , Orhun U. Aydin 1 , Jonas Behland 1 , Jan Sobesky 3,4 , Ivana Galinovic 3 , Ahmed A. Khalil 3,5,6,7 , Abdel A. Taha 8 , Jens Wuerfel 9 , Petr Dusek 10 , Thoralf Niendorf 11 , Jochen B. Fiebach 3 , Dietmar Frey 1 , Michelle Livne 1 1 声明 - Charité 医学人工智能实验室,柏林 Charité Universitätsmedizin,德国 2 英国伯明翰城市大学计算与数字技术学院,计算、工程与建筑环境学院 3 柏林中风研究中心,Charité德国柏林医学大学 4 Johanna-Etienne 医院,诺伊斯,德国 5 马克斯普朗克人类认知与脑科学研究所神经病学系,莱比锡,德国 6 柏林洪堡大学柏林心智与脑学院心智、大脑、身体研究所,柏林,德国 7 柏林健康研究所,柏林,德国 8 数据科学研究工作室,奥地利研究工作室,萨尔茨堡,奥地利 9 巴塞尔大学医学图像分析中心 AG 和生物医学工程系,巴塞尔,瑞士 10 布拉格查理大学第一医学院和大学综合医院神经病学系和临床神经科学中心,布拉格,捷克 11 柏林超高场设施 (BUFF),亥姆霍兹联合会 (MDC) 马克斯德尔布吕克分子医学中心,柏林,德国
Infrascanner — 白皮书 手持式脑血肿检测仪 执行摘要 仅在美国,每年约有 287 万人遭受创伤性脑损伤 (TBI),导致 253 万人次就诊、288,000 人次住院和 56,800 人次死亡。1 这一数字自 2006 年以来增长了 53%,这可能是因为人们越来越意识到延迟治疗脑震荡和其他头部损伤的危险。TBI 是 15 至 24 岁男性的主要公共卫生问题,他们占儿童和青少年头部创伤患者的三分之二。此外,TBI 是老年人(75 岁及以上)的严重问题,无论男女。全球每年有超过 2700 万例 TBI 新发病例,年龄标准化发病率为每 100,000 人口 369 例2。快速分类、诊断和治疗对于最大限度地减少更严重 TBI 病例的不良后果至关重要。由于许多 TBI 病例成群出现,并且是个体受害者复杂而广泛的创伤的一部分(源于车祸、战区爆炸等),现场医务人员面临着巨大的挑战。特别是对于中度至重度 TBI 患者,在创伤事件发生后的第一个小时内(“黄金”小时)做出诊断至关重要 3 。InfraScan, Inc. 开发了 Infrascanner,可快速评估可能有颅内出血的头部创伤患者。该技术便携且无创,可重复监测而无需担心辐射剂量。海军研究办公室 (ONR) 和美国海军陆战队 (USMC) 赞助了 Infrascanner 的开发。海军陆战队已确定需要采购一种手持式、非侵入性、基于近红外的诊断设备来检测受伤部位的脑血肿。红外扫描仪是授权医疗津贴清单 (AMAL) 635、营级急救站 (BAS) 的现代化升级版,美国海军陆战队野战部队的医疗部门将其用作早期发现颅内血肿的实用解决方案。每个 BAS 将配备两台红外扫描仪和一批一次性光纤防护罩。初始部署数量约为 200 台红外扫描仪和 20,000 个一次性光纤防护罩,每台设备 100 个。脑损伤概述 TBI 是两种后天性脑损伤之一,可由闭合性头部损伤(头部突然猛烈撞击物体但颅骨保持完整)或穿透性头部损伤引起;另一种后天性脑损伤是非创伤性脑损伤(如中风、脑膜炎)。TBI 是一种高度个性化的损伤,其严重程度取决于损伤性质、力量强度、受影响的大脑区域以及患者之间的身体和遗传差异。 TBI 造成的损伤可以是局部性的(局灶性的),局限于大脑的某个区域,或弥漫性(通常是脑震荡),涉及大脑的多个区域。局灶性脑损伤的类型包括脑组织挫伤(挫伤)和颅骨内血管破裂,从而导致大量出血(颅内出血或血肿)。出血可能
脑血管结构的变化是许多脑部疾病的关键指标。原发性血管病、血管危险因素(例如糖尿病)、创伤性脑损伤、血管闭塞和中风均会影响脑血管网络的功能 1 – 3 。阿尔茨海默病的典型症状,包括 tau 蛋白病和淀粉样变性,也会导致血管异常重塑 1、4 ,从而使毛细血管稀疏可用作血管损伤的标志 5 。因此,对整个脑血管进行定量分析对于更好地了解生理和病理状态下的脑功能至关重要。然而,量化脑血管网络的微米级变化一直很困难,主要有两个原因。首先,尚未实现对小鼠完整脑血管直至最小血管的标记和成像。磁共振成像 (MRI)、微型计算机断层扫描 (micro-CT) 和光学相干断层扫描的分辨率不足以捕捉大块组织中的毛细血管 6 – 8 。荧光显微镜提供更高的分辨率,但通常只能应用于厚度不超过 200 μ m 的组织切片 9 。组织透明化方面的最新进展可以克服这个问题 10 ,但到目前为止,还没有对整个大脑中所有尺寸的所有血管进行三维 (3D) 的系统描述。第二个挑战涉及对大型 3D 成像数据集的自动分析,这些数据集在不同深度的信号强度和信噪比 (SNR) 存在很大差异。简单的基于强度和形状的滤波方法,例如 Frangi 的血管滤波器以及具有局部空间自适应性的更先进的图像处理方法,无法可靠地将血管与
Principles: -‐ Vascular development follows: -‐ metabolic demand -‐ cerebral morphology -‐ Organiza1on of vascular distribu=ng system evolves as the brain grows -‐ open neural tube: diffusion from amnio=c fluid -‐ prechoroidal stage : neural tube closes, diffusion from meninx primi1va -‐ choroidal stage : invagina = of meninx!脉络丛;外部和室室表面的差异;基本动脉桃子一直存在于以后的阶段 - 实质阶段:脑幔厚:超级血管系统的血管生成
所有 PET 研究均采用经过大量改进的 Scanditronix SP-3000 进行。该断层扫描仪是一台带有 BaF 晶体的全身飞行时间机器,特别适合通过快速注射 0.15 水进行的高计数率研究。图像重建的分辨率为 10 毫米。使用侧颅骨 X 射线仔细定位受试者,并用定制的聚氨酯泡沫头架和热塑性面罩固定头部。在注射任何示踪剂之前,使用旋转的 Ge-68 源获取衰减数据集 40 分钟。这稍后在图像重建期间用于适当校正发射数据。在衰减扫描之前,在右侧肘前窝放置静脉导管,在左侧放置桡动脉导管。含有 Ge68 的校准瓶位于视野范围内,并从瓶中取出一部分放入伽马计数器进行计数,以便计数器和
摘要。在正常碳酸血症和中度及重度低碳酸血症期间测量脑血流量 (CBF) 和脑氧代谢率 (CMR0 2)。18 只 1 至 7 天大的新生杂种狗接受泮库溴铵治疗,并用 70% NzO 和 30% O 2 进行通气。调节呼吸器以使 PaC0 2 达到 15 托,随后通过调节吸入的 CO 2 浓度将 PaC0 2 调整至 25 和 40 托。PaC0 2 水平的顺序是随机的。用微球技术测量 CBF,CMR0 2 计算为动脉矢状窦 O 2 含量差乘以半球血流量。所有测量均在每个 PaC0 2 下 30 分钟后进行。• PaC0 2 为 25 托时总 CBF 降低(p < 0.001),与 25 托 CO 2 相比,PaC0 2 进一步降低至 15 托导致总 CBF 显著降低 (p < 0.01)。PaC0 2 为 25 托时所有区域脑血流量均降低(p < 0.001),PaC0 2 为 15 托时大多数区域 CBF 的流量进一步显著降低。在 PaCO z 为 40 托时,CMR0 2 为 1.28 ± 0.47 ml/ 100 g/min,在 PaCO 2 值为 25 和 15 托时,分别降至 1.09 ± 0.34 (p < 0.05) 和 1.04 ± 0.28 (p < 0.025) ml/l00 g/min。在 PaCO 2 为 40 托时,心输出量计算为 169 ± 71 ml/kg/min,在 PaCO 2 值为 25 和 15 托时,分别降至 135 ± 27 (p < 0.025) 和 127 ± 36 (p < 0.005) ml/kg/min。对于 PaCO z 在 10 至 50 托之间的值,PaCO 2 与 CBF 之间的关系的回归分析是非线性的(In CBF = a + b·PaCO 2 )。区域 CBF 的一系列回归曲线显示 R 值在 0.69 和 0.81 之间(p < 0.001)。结论是,当 PaCO 2 值为 25 和 15 托时,低碳酸血症会导致总脑血流量和区域脑血流量显著减少。与正常碳酸血症相比,当 PaCO 2 值为 25 和 15 托时,CMR0 2 和心输出量也显著减少。在 10 至 50 托之间,区域 CBF 与 PaCO 2 之间存在非线性关系。(Pediatr Res 20:1102-1106,1986)
