I.引言本指南的目的是协助赞助商临床开发药物,以治疗糖尿病足感染(DFIS),而无需骨骼和关节受累。2具体来说,本指南涉及食品药物管理局(FDA)关于整体开发计划和临床试验设计的当前思维,以开发药物,以支持治疗DFI的指示。在单独的指导中介绍了用于治疗急性细菌皮肤和皮肤结构感染的药物,该药物定义为蜂窝织炎/埃里赛司赛,伤口感染和主要皮肤脓肿。3本指南不包含对统计分析或临床试验设计的一般问题的讨论。分别在临床试验的ICH行业E9统计原理(1998年9月)和E10对照组和相关问题的选择中分别解决了这些主题(2001年5月)。4个糖尿病脚感染包括位于麦芽脂蛋白的或远端的蜂窝炎,溃疡以及骨和关节感染。骨骼和关节感染不包括该指南的范围。一般而言,FDA的指导文件并未确定合法可执行的责任。相反,指南描述了该机构对某个主题的当前思考,除非提到具体的监管或法定要求,否则应仅查看建议。使用
耐甲氧西林金黄色葡萄球菌(MRSA)通常通过直接接触或受污染的物体在住院的患者之间传播。然而,MRSA的家庭传播动态尚不清楚,对有效预防构成了挑战。这项研究评估了至少17个月的无症状携带者中MRSA殖民地的持续性,并检查了家庭内传播的潜力。我们对七个家庭进行了家庭访问,每个家庭至少有一个MRSA-Colonized成员,以收集所有家庭成员的鼻拭子。通过培养,抗菌易感性测试和PCR确定分离株的表型和基因型谱。我们将这些新样本与最新研究的先前样品进行了比较,涉及相同个体,以评估MRSA的自发清除率。总共收集了25个样本,其中56%(14)个确定为金黄色葡萄球菌,而44%(11)为非S。金黄色在金黄色葡萄球菌分离株中,有四个是MRSA。我们观察到MRSA在六个原始案例中的自发清除率。出乎意料的是,MRSA的家庭内传播有限,尽管所有具有MRSA殖民的家庭至少有一个患有皮肤病史的成员。在殖民地持续存在的家庭中,一个人反复出现皮肤脓肿,这表明可能与持续定殖的联系有联系。
我是微生物学教授,在分枝杆菌学和抗分枝杆菌药物研发方面拥有 20 多年的经验(>200 篇出版物;h 指数:58;i10 指数:148,D 指数:58)。我是哈肯萨克子午线健康中心 (CDI;新泽西州纳特利,我常驻的地方) 发现与创新中心的成员,也是哈肯萨克子午线医学院 (新泽西州纳特利) 和乔治城大学 (华盛顿特区) 的教授。之前的职位包括新加坡国立大学副教授和诺华公司结核病 (TB) 部门执行主任。2017 年从新加坡搬到美国后,我于 2018 年开始从事 NIH 资助的研究。自从我开始从事 NIH 资助的工作以来,我发现了一个总共 10 个先进的抗结核分枝杆菌线索(定义为在小鼠感染模型中具有暴露、耐受性和有效性的化合物)和几个重新利用的候选药物。阐明了 13 个线索的作用和抗药性机制。自 2018 年以来,我的工作产生了约 90 篇出版物。直到 2017 年,我都专注于发现用于治疗结核病(结核分枝杆菌)的新抗生素,该疾病领域已经建立了强大的临床前管道。在过去的几年里,我越来越多地将活动转向由“非结核分枝杆菌”(NTM)引起的被忽视的肺部疾病,重点是无法治愈的脓肿分枝杆菌感染。我的研究目标是填充 NTM 药物管道。我们确定全细胞活性物质的作用/抗药性机制,并利用这些知识来递送新型先导靶点组合和临床前开发化合物。我们通过双管齐下的方法填充临床前空间:从头药物发现(新靶点和/或新化学类型)和药物再造(通过化学优化改进已批准的药物)。此外,我们通过确定用于其他疾病适应症的临床使用(或开发)药物来填充临床 NTM 管道,以便重新利用。由于我在抗生素发现和多学科项目管理方面的经验,我非常适合领导“新药发现和重新利用方法以针对 M. 脓肿肺病的更好方案”项目,以推进我们的单一抗 NTM 药物和组合组合。在 CDI,我建立了一个功能齐全的 NTM 药物发现平台。该平台包括菌株收集、体外效力测定、以及体内(小鼠)药理学模型。靶标反卷积和抗性分析补充了我们的化合物分析能力。通过与来自工业界(包括葛兰素史克、默克、Evotec)和学术界(例如 AldrichlabUMinnesota;DrugDiscoveryUnit DundeeU、Richter/ImminglabsUHalle)的经过验证的药物化学合作伙伴合作,我开发了一个有吸引力的抗 NTM 项目组合,为加速发现和开发针对 NTM 肺病的全口服治疗方案奠定了良好的基础。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
中枢神经系统病理学的总体患病率表明,中枢神经系统疾病中大约有超过10亿人患有十亿多人。对中枢神经系统递送药物的最令人痛苦的事实是血液脑屏障的存在,其趋势会损害药物分布,并表示CNS药物开发的主要障碍。神经肽和许多本质上具有亲水性的药物可能会在传递血脑屏障时涵盖复杂性。净量药物(药物)及其进入相关目标部位的能力是CNS药物开发的主要考虑点。大脑靶向药物向大脑的递送在大脑的疾病中很有价值。(阿尔茨海默氏病,脑膜炎,脑脓肿,癫痫,多发性硬化症,神经炎选择性疾病,睡眠障碍等)。,由于药物释放,可以通过较小的副作用获得高浓度。靶向大脑的最简单方法是获得治疗性。大脑靶向系统通过越过BBB来保留在大脑区域,从而显着有助于增加治疗活性。,人们对大脑靶向的吸引力越来越多,并起诉其在治疗各种CNS疾病中的巨大应用,因为大多数药物无法越过BBB。本评论文章讨论了一种新型的技术“纳米技术”和其他旨在针对大脑并具有各种临床益处的方面,例如药物剂量降低,副作用较小,无创路由和更好的患者依从性。
摘要:多药(MDR)超级细菌可以破坏血脑屏障(BBB),从而导致促炎性调节剂的连续弹药,并诱导严重感染相关的病理学,包括脑膜炎和脑脓肿。宽光谱或物种特异性抗毒剂(β-乳糖酶抑制剂,多黏膜蛋白,万古霉素,Meropenem,Plazomicin和Sarecomicin和Sarecycline)和生物相容性多(乳酸 - 糖 - 甘油酸)(Plga)纳米酸(Pla)纳米纳波特菌株已被用来处理这些迷雾。但是,需要具有广泛影响的新的治疗平台,不需要发挥脱靶的有害影响。膜囊泡或细胞外囊泡(EV)是脂质双层封闭的颗粒,由于其绕过BBB约束的能力,具有治疗潜力。来自肠道菌群的细菌衍生的电动汽车(BEV)是有效的转运蛋白,可以穿透中枢神经系统。实际上,可以通过表面修饰和CRISPR/CAS编辑来重塑BEV,因此代表了一个新的平台,用于赋予防止违反BBB的感染的保护。在这里,我们讨论了与肠道菌群和益生菌衍生的BEV有关的最新科学研究,以及它们的治疗方法,以调节神经递质和抑制Quorum感应性,以治疗诸如parkinson's and parkinson's和alzheimerseseasesessesess,以抑制Quorum sensiss。我们还强调了益生菌衍生的BEV对人类健康的好处,并提出了开发创新异源表达系统来打击BBB跨性病原体的新方向。
摘要简介造口位置是一种常见的外科手术程序,可以在紧急和选择性手术的良性和恶性状况的背景下进行,估计发病率在21%至70%之间。方法进行回顾性队列分析,以确定与术后相关并发症和潜在相关因素的良好位置的发生率。这项研究是在墨西哥城的一个三级护理中心进行的,其中包括所有在2016年1月至2023年10月之间进行造型的患者。总共进行了276名患者进行造口结构。80名(29.3%)患者的发病率与造口术有关。多变量分析显示了以下风险因素:与造口相关并发症的高级年龄;肥胖用于发展副疝;伴有疝气和复杂的憩室疾病,以形成粘膜性裂开;肠梗阻和副疝,用于发育垂直脱垂;吻合式渗漏和术前皮质类固醇治疗,用于发展副脓肿;以及末端造口术和重新手术的高龄。讨论造口术的创造具有很高的发病率。术前特征,例如高龄,肥胖,皮质类固醇治疗,手术的指示以及所产生的造口类型,因为它们可以显着影响不良结果的发展。
背景:肝病是全球重大公共卫生问题,新型治疗药物的研发是重要的研究重点。但目前尚未见对我国肝病药物研发现状及临床试验新药开发与评价的实际情况进行综述。方法:通过“药品临床试验登记与信息公开平台”获取2020年12月31日前所有肝病临床试验信息。结果:上述平台共公布肝病相关药物临床试验751项,包括化学药574项、生物制品128项、中药/天然药物49项。年度登记数量逐年增加。这些临床试验的主要适应症为病毒性肝炎、肝脏恶性肿瘤、肝脓肿、肝移植、先天性肝脏代谢病和其他肝炎相关疾病。乙肝、丙肝和肝癌占临床试验总数的72.4%,且大部分涉及仿制药研究。目前有103个创新药物处于临床试验阶段,主要针对乙肝、丙肝和肝细胞癌。结论:我国临床试验需要加强宏观控制,需要针对重点肝病寻找新的治疗靶点和开发创新药物,以及预防丙肝疫苗,以及肝癌的靶向治疗、中药/天然药物和免疫治疗。关键词:临床试验,肝脏疾病,乙肝,丙肝,肝癌
人工智能 (AI) 几乎渗透到社会的方方面面。华尔街公司使用 AI 作为对付其他股票交易员的技术武器。工业巨头使用 AI 来预测消费者需求并优化生产。科技公司使用 AI 来预测消费者行为并优化营销策略。在医学领域,放射学是 AI 适用性最受吹捧的领域之一:所谓的机器人放射科医生 (1)。早期的肺癌检测、自动冠状动脉钙化评分和基于 CT 的合成 MRI 是研究实验室、科技初创公司和医疗保健企业快速发展市场中的众多放射学 AI 创新之一。通过放射组学,AI 从临床图像中提取可挖掘的高维数据,例如自动化与强大基因组数据库相连的复杂四维心血管血流模型 (2)。相比之下,马拉维的 RAD-AID 志愿者照顾了一位母亲,她徒步旅行了 2 周,带着她的孩子来接受腹部肿块的超声检查。在佛得角,RAD-AID 志愿者帮助一名髋部骨折患者接受放射检查,该患者在一次交通事故后两周内未得到诊断。在坦桑尼亚,我们的介入放射学团队为一名 3 岁女孩排出脓肿,避免了对腹部“肿块”进行探查手术。从印度到华盛顿特区医疗服务不足的地区,已有超过 20,000 名女性接受了服务
女性健康 临床轮转主题 泌尿生殖系统(女性) 膀胱疾病:尿失禁、膀胱过度活动症、脱垂 膀胱输尿管反流 感染性疾病:膀胱炎、肾盂肾炎、尿道炎 肿瘤:膀胱癌 肾结石/尿路结石 尿道疾病:脱垂、狭窄 生殖系统 乳腺疾病:脓肿、纤维腺瘤、纤维囊性变、溢乳、男性乳房发育、乳腺炎 宫颈疾病:宫颈炎、发育不良 避孕方法 人类性行为和性别认同 不孕症 更年期 月经失调 乳腺和生殖道肿瘤:良性、恶性 卵巢疾病:囊肿、多囊卵巢综合征、扭转 盆腔炎 妊娠:胎盘早剥、臀位、宫颈机能不全、剖宫产和手术分娩、流产分类、宫外孕、妊娠期糖尿病、妊娠期滋养细胞疾病、妊娠期高血压疾病、分娩、多胎妊娠、前置胎盘、产后护理、产后出血、产后垂体疾病、产后精神病、孕前/产前护理、胎膜早破、Rh 血型不合、肩难产、脐带脱垂 妊娠期创伤:身体创伤、心理创伤、性创伤 子宫疾病:子宫内膜异位症、平滑肌瘤、脱垂 阴道/外阴疾病:巴氏腺囊肿、膀胱膨出、脱垂、直肠膨出、阴道炎
