随着人们的生活质量的不断提高,近年来能源消耗日益增加。即将到来的全球能源危机引起了全世界的关注。此外,传统燃料的减少会引起能源危机,传统燃料的燃烧会引起温室的影响,这对人们的现有环境产生了重要的威胁。在这种严峻的情况下,多年来的大量研究集中在将相变材料(PCM)纳入建筑材料中,以实现节能和传热增强的目的。1,2将PCM纳入具有稳定形状的建筑材料中,近年来已被广泛考虑。PCM是一种新型的功能材料,通过改变形式并保持温度不变,吸收或释放大量能量。它在建筑能源节能,太阳能利用,热恢复,温度控制,电池热管理和其他ELD的应用方面具有良好的前景。3 - 7根据相变状态,PCM通常分为三类:固体 -
Inconel 738 是一种镍基高温合金,由于具有抗疲劳、高屈服强度、耐腐蚀和热稳定性等优异性能,主要用于航空航天 [ 1-4 ] 和石油工业 [ 5 ] [ 6 ]。Inconel 738 高温合金的力学性能取决于微观结构参数,例如金属间化合物 γ ′ 相 (Ni 3 (Al, Ti)) 的体积分数以及 γ ′ 颗粒的尺寸、分布和形状[ 7-9 ]。然而,燃气轮机的发展导致使用温度越来越高,并且经常出现腐蚀问题 [ 1 , 2 ]。已经对不同的涂层进行了评估以增强腐蚀性能;例如,用于高温应用的涂层包括扩散和热障涂层 [ 10 ]。 Inconel 625 因含有高含量的铬、镍和钼 [11-13],保证了出色的耐腐蚀和抗氧化性能,被广泛用作腐蚀环境的涂层材料 [14]。Inconel 625 也是海洋环境和切削刀具的良好涂层 [15]。因此,可以预见,使用抗氧化涂层(如 Inconel 625)可以防止燃气轮机敏感部件受到严重损坏 [16]。在本研究中,通过横向激光熔覆在 Inconel 738 基材上涂覆了 Inconel 625 镍基高温合金。目前,有多种表面涂层方法可供选择,如机械法[17]、化学法[18-21]、溶胶-凝胶法[22]、氧化法[23,24]、渗碳法[25]、离子注入法[26,27]、热法[28,29]和熔覆法[30]。激光熔覆(LC)是一种先进的表面改性技术[31,32],常用于工业应用,例如
摘要。热交换器在其使用寿命期间会受到各种环境的影响,包括加热和冷却循环、表面盐水环境和机械载荷。因此,腐蚀性能至关重要,因为材料的穿孔可能导致系统故障。钎焊轧制铝板的腐蚀行为非常重要,因为这是汽车热交换器最常见的故障模式,尤其是在汽车零件轻量化趋势日益明显的情况下。此外,固溶热处理、均质化和钎焊等热处理会改变微观结构,从而改变腐蚀行为。已经研究了均质化温度和持续时间对 AA-3xxx 铝合金微观结构的影响,但还需要更多的研究。本研究的目的是了解均质化热处理过程中的不同保持时间如何影响腐蚀行为。加速实验室腐蚀测试对于对试验材料进行排名并最终使合金符合生产条件至关重要。本研究检查了钎焊前后双层改性铝板(AA4045/3003 改性)的腐蚀行为。腐蚀扩展归因于钎焊板之间的电位差,在海水酸加速试验 (SWAAT) 和 AA4045/3003 改良钎焊板的电化学测试后,扩散区在芯材上形成电驱动穿孔。此外,SWAAT 与动电位极化测量之间的联系已经建立,这表明这些电化学方法可用于替换或加固 SWAAT,从而降低成本。
摘要:采用快速熔化和凝固的快速传热增材制造方法生产的合金零件与传统工艺制成的材料相比,具有不同的微观结构、特性和性能。本研究比较了采用粉末床熔合工艺制备的SS316L与冷轧SS316L的耐腐蚀和氧化性能。此外,对不锈钢表面氧化膜进行了全面评估,因为该膜对抗腐蚀和氧化性能的影响最大。研究了热处理对增材制造SS316L耐腐蚀和氧化性能的影响。SS316L具有由亚晶胞形成的微观结构,其中局部浓缩的合金元素形成稳定的钝化膜。因此,它比传统的冷轧材料具有更高的耐腐蚀和抗氧化性能。然而,已证实热处理会去除亚晶胞,从而导致耐腐蚀和氧化性能的下降。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
镁合金具有生物相容性和可生物降解性,并能促进骨长入,使其成为未来治疗大面积骨缺损时替代自体和同种异体移植的理想候选材料。这些合金的粉末床熔合 - 激光束 (PBF-LB) 增材制造将进一步允许生产针对骨移植进行优化的复杂结构。然而,通过 PBF-LB 加工的结构的腐蚀率仍然太高。更好地了解 PBF-LB 期间产生的微观结构对腐蚀性能的影响被认为是其未来在植入物中应用的关键。在本研究中,研究了 PBF-LB 加工和随后的热等静压 (HIP) 对不同样品方向的微观结构和织构的影响,并将其与 Mg-Y-Nd-Zr 合金的腐蚀行为联系起来。将结果与挤压的 Mg-Y-Nd-Zr 合金进行了比较。与挤压材料相比,PBF-LB 加工材料的二次相数量越多,其局部腐蚀速率就越高。由于二次相的生长,HIP 之后的腐蚀速率进一步增加。此外,在 PBF-LB 材料中观察到了强烈的纹理,而在 HIP 材料中这种纹理也得到了增强。虽然这会影响通过动电位极化测试测得的电化学活性,但在长期质量变化和氢释放测试中,任何纹理效应似乎都被二次相的贡献所掩盖。未来的工作应该进一步研究各个工艺参数对材料微观结构和由此产生的腐蚀行为的影响,以进一步阐明其相互依赖性。
1 西安大学陕西省表面工程与再制造重点实验室,西安 710065 2 西安大学西安植入器械原型与优化重点实验室,西安 710065 3 西安交通大学材料力学行为国家重点实验室,西安 710049 * 电子邮件;liumingxia1121@163.com 收稿日期:2022 年 1 月 6 日/接受日期:2022 年 2 月 22 日/发表日期:2022 年 4 月 5 日 采用超高速激光熔覆-随后的激光重熔(EHLA-LR)在 2Cr13 钢基体上制备镍基涂层。详细研究了激光重熔(LR)处理对超高速激光熔覆(EHLA)涂层的形貌、微观组织、残余应力和耐腐蚀性能的影响。结果表明:EHLA-LR一体化工艺可使涂层表面粗糙度降低86%、表面致密性提高、表面平整度得到优化。EHLA-LR涂层近表面枝晶间距减小,晶粒细化,经LR处理后涂层物相变化不大。结果表明:涂层残余压应力基本保持不变,但经LR处理后残余压应力略有降低。此外,由于LR工艺提高了涂层表面致密性、细化了晶粒,EHLA-LR涂层的耐腐蚀性能优于EHLA涂层。关键词:超高速激光熔覆;激光重熔;微观组织;晶粒细化;残余应力;耐腐蚀性能
沿海核电站的服务水系统使用咸水和经常被污染的水,面临着业内最苛刻的服务环境之一。瑞典公用事业公司 OKG AKTIEBOLAG 在其位于瑞典菲格霍尔姆的奥斯卡港核电站就拥有这种运行环境。服务水系统中使用的咸水和污染的波罗的海水导致原始系统材料大面积腐蚀。自 1978 年以来,材料更换、测试和评估一直在进行,使 OKG 拥有世界上任何核电站中最丰富的 6 Mo 奥氏体不锈钢、钛和其他高性能替代材料运行经验。本案例研究回顾了原始系统材料遇到的问题;替代材料评估程序;以及合金在服务中的实际性能;因此,为具有同样严苛运行环境的公用事业公司提供了宝贵的见解。
沿海核电站的服务水系统使用咸水和经常被污染的水,面临着业内最苛刻的服务环境之一。瑞典公用事业公司 OKG AKTIEBOLAG 在其位于瑞典菲格霍尔姆的奥斯卡港核电站就拥有这种运行环境。服务水系统中使用的咸水和污染的波罗的海水导致原始系统材料大面积腐蚀。自 1978 年以来,材料更换、测试和评估一直在进行,使 OKG 拥有世界上任何核电站中最丰富的 6 Mo 奥氏体不锈钢、钛和其他高性能替代材料运行经验。本案例研究回顾了原始系统材料遇到的问题;替代材料评估程序;以及合金在服务中的实际性能;因此,为具有同样严苛运行环境的公用事业公司提供了宝贵的见解。