收稿日期: 2022-02-28 ; 修 改稿日期: 2022-03-31 。 基金项目: 北京市科技计划项目( Z201100004520016 )。 第一作者: 李红霞( 1996 —),女,硕士研究生,研究方向为储能优化
智能手机是最适合承载端侧 AI 的载体, AI 手机可提供差异化的用户价 值与品牌价值。智能手机具有保有量大、使用便携、使用场景多、使用 时长久、应用生态系统强大等优势,可创造众多的 AI 使用场景,并加速 第三方 AI 应用成熟,我们认为智能手机将是生成式 AI 最佳的应用载体 之一。 AI 手机的定义具有三个典型特征:①能够在手机端侧运行大模型; ② SoC 中包含 NPU 算力;③达到一定参数要求的性能指标。 AI 手机可提 供差异化的用户价值与品牌价值。对用户而言, AI 手机将是自在交互、 智能随心、专属陪伴、安全可信的个人化助理,使用体验较目前阶段智 能手机大幅提升。对于手机厂商而言,可提供品牌形象与用户粘性。
对侧mRNA covid-19增强抗体的幅度,以改善COVID-19 Vac-scine免疫反应,Fazli等人。的研究检查了在相同或对侧臂中施用助力剂量的影响(9)(图1)。与最近的一些发现(10)相反,当前的研究报告说,在先前使用初次疫苗的人中,辉瑞技术NT162B2促进了抗体反应的高幅度。在第三次疫苗接种后大约五个月后,在最后一个时间点分析了这种差异最为明显。notably,该研究的重点是中和抗体反应,包括针对Omicron变体的反应(B.1.1.529),揭示了具有对侧增强的增强抗体。较高的抗体水平也与改善变异菌株的跨义中和化有关(11),面对不断发展的病毒威胁,解决了至关重要的关注点。该研究的强大方法论涵盖了大型和彻底的参与者入学和人口统计分析,可以增强其发现的可靠性。这项工作为疫苗的优化提供了宝贵的见解
要保护加密实现免受侧通道漏洞的影响,开发人员必须采用恒定的时间编程实践。由于这些可能是错误的,因此已经提出了许多侧通道检测工具。尽管如此,此类漏洞仍在加密库中手动发现。虽然Jancar等人最近的一篇论文。表明,开发人员很少执行侧道通道检测,目前尚不清楚现有的检测工具是否首先会发现这些漏洞。为了回答这个问题,我们调查了文献,以建立34个侧通道检测框架的分类。我们提供的分类比较了多个标准,包括所使用的方法,分析的可扩展性或所考虑的威胁模型。然后,我们在选择了5种有前途的检测工具的选择上建立了代表性Cryp-Graphic操作的统一共同基准。此基准测试使我们能够更好地比较每个工具的功能及其分析的可扩展性。此外,我们还提供了最近发布的侧通道漏洞的分类。然后,我们在基准上测试每个漏洞子集以及它们出现的上下文的每个选定工具。我们发现,由于各种原因,现有的工具可能难以找到脆弱性,主要是缺乏对SIMD指示,隐性流和内部秘密生成的支持。根据我们的发现,我们为研究社区和密码图书馆开发人员开发了一系列建议,其目标是提高侧通道检测工具的有效性。
要保护加密实现免受侧通道漏洞的影响,开发人员必须采用恒定的时间编程实践。由于这些可能是错误的,因此已经提出了许多侧通道检测工具。尽管如此,此类漏洞仍在加密库中手动发现。虽然Jancar等人最近的一篇论文。表明,开发人员很少执行侧道通道检测,目前尚不清楚现有的检测工具是否首先会发现这些漏洞。为了回答这个问题,我们调查了文献,以建立34个侧通道检测框架的分类。我们提供的分类比较了多个标准,包括所使用的方法,分析的可扩展性或所考虑的威胁模型。然后,我们在选择了5种有前途的检测工具的选择上建立了代表性Cryp-Graphic操作的统一共同基准。此基准测试使我们能够更好地比较每个工具的功能及其分析的可扩展性。此外,我们还提供了最近发布的侧通道漏洞的分类。然后,我们在基准上测试每个漏洞子集以及它们出现的上下文的每个选定工具。我们发现,由于各种原因,现有的工具可能难以找到脆弱性,主要是缺乏对SIMD指示,隐性流和内部秘密生成的支持。根据我们的发现,我们为研究社区和密码图书馆开发人员开发了一系列建议,其目标是提高侧通道检测工具的有效性。
摘要:由于CT扫描技术的快速技术进步,心血管CT被广泛用于诊断心血管疾病。这些进步包括从早期到最新型号的多层CT的开发,它具有获取具有高空间和时间分辨率的图像的能力。最近的光子计数CT的出现在临床应用中进一步提高了CT性能,从而改善了空间和对比度分辨率。CT衍生的分数流储备优于基于标准CT的解剖学评估,用于检测病变特异性的心肌缺血。CT衍生的3D印刷患者特异性模型也优于标准CT,在教育价值,手术计划和心血管疾病治疗的模拟方面具有优势,并增强了医生 - 患者的交流。三维可视化工具,包括虚拟现实,增强现实和混合现实,进一步提高了心血管疾病中心血管CT的临床价值。随着人工智能,机器学习和心血管疾病中深度学习的广泛使用,心血管CT的诊断性能得到了显着改善,并且在疾病诊断和预测方面都提出了令人鼓舞的结果。还讨论了这些技术的局限性和未来前景。本评论文章概述了心血管CT的应用,从传统的管腔评估的诊断价值的角度涵盖了其性能,以鉴定易受伤害的病变,以通过使用这些高级技术来预测疾病结果。
摘要。光学元面具有无与伦比的灵活性,可以通过下波长的空间分辨率操纵光场。将元面耦合到具有强光学非线性的材料可能允许超快时空光场调制。但是,到目前为止所证明的大多数元整口是线性设备。在这里,我们在实验上证明了同时使用单层等离子式肩面与纤维激光腔中的Epsilon-Near-Zero(ENZ)材料强耦合。虽然元表面的几何阶段被用来将激光器的横向模式从高斯束转换为带有轨道角动量的涡旋束,但通过Q -Switching过程,ENZ材料的巨大非线性可饱和吸收使脉冲激光产生。在激光腔中直接整合时空跨表面可能为开发具有量身定制的空间和时间剖面的微型化激光源铺平了道路,这对于多种应用来说是有用的,例如超级分辨率成像,高密度光学存储,高密度光学储存以及三维激光射击光刻。
感知是在大脑中形成图形-地面分割和以物体为中心的表征之后产生的。研究表明,注意力在忽视中起着关键作用,研究表明颞顶交界处受损的患者无法将注意力从同侧空间转移到对侧空间(Friedrich、Egly、Rafal & Beck,1998;Posner、Walker、Friedrich & Rafal,1984),即使对于出现在同侧半视野内的目标也是如此(Ladavas,1990;Ladavas、Del Pesce & Provinciali,1989)。与对侧注意力受损相比,对同侧空间的注意力实际上可能会增强(D'Erme、Robertson、Bartolomeo、Daniele & Gainotti,1992;Ladavas,1990;Ladavas、Petronio & Umilta,1990)。这可能是由于右半球受损后优势左半球的抑制作用减弱所致(Cohen、Romero、Servan-Schreiber & Farah,1994;Kinsbourne,1977、1993)。使用经颅磁刺激 (TMS) 暂时扰乱右顶叶皮质处理的研究也为这种半球竞争解释忽视提供了证据(Blankenburg et al.,2008;Seyal、Ro & Rafal,1995;Szczepanski & Kastner,2013)。或者,如果右半球负责注意空间的两个半部,而左半球只负责注意空间的右侧,那么右半球损伤更有可能导致忽视(Heilman & Valenstein,1979;Heilman & Van Den Abell,1979,1980)。此外,右半球损伤后,同侧半球也可能出现注意力缺陷(Vuilleumier & Rafal,2000),忽视还可能出现时间注意力缺陷(Husain、Shapiro、Martin & Kennard,1997)。这些关于忽视的半球不对称解释表明,感知处理可能在大脑损伤同一侧(同侧)的视觉空间中受到影响,这与该领域的普遍观点(同侧空间不受影响)相反。为了验证这一想法,在本研究中,我们使用元对比掩蔽范式评估了忽视患者对侧和同侧空间的空间和时间处理差异,其中短暂呈现的目标刺激在元对比掩蔽之前以不同的延迟呈现。在神经健康的受试者中,当目标刺激在周围元对比掩蔽之前约 30 毫秒的相同位置呈现时,目标刺激经常被错过,并且只感知到元对比掩蔽(Breitmeyer,1984;Breitmeyer & Ogmen,2000;Ogmen,Breitmeyer,& Melvin,2003)。有人假设这种掩蔽是由于视觉皮层中掩蔽的反馈处理中断了目标刺激的前馈处理(Enns,2004;Ro,Breitmeyer,Burton,Singhal,& Lane,2003)。重要的是,研究之前已经表明,正常受试者的元对比掩蔽的幅度和持续时间受到内源性注意力的影响(Boyer & Ro,2007;Ramachandran & Cobb,1995)。通过操纵这些目标和掩蔽刺激在空间中的位置和时间中呈现,我们评估了忽视如何影响两名忽视患者对侧和同侧半场的元对比掩蔽。为了进行比较,我们还在一组神经健康、年龄匹配的受试者中使用相同的范例测量了元对比掩蔽的空间和时间范围
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起: