本报告收录了亚利桑那州立大学校长 Michael M. Crow 于 2008 年发表的一篇题为“创建创业型大学”的文章。该报告以亚利桑那州立大学为例,主要关注研究型大学的作用以及他如何能够改变文化,使大学的行为更像一家私营公司——“灵活、有竞争力、适应性强,能够响应我们选民和全球社会不断变化的需求”——而不是传统大学(第 2 页)。Crow 认为,他和他的亚利桑那州立大学同事已采取措施“将公立教育重新定义为以解决方案为中心的机构,将最高水平的学术卓越性、最大的社会影响力和对尽可能广泛的人口的包容性结合起来”(第 2 页)——结论是,现代大学必须在卓越和致力于广泛普及之间做出选择是一种错误的二分法。论文还包括研究型大学发展的历史分析、美国当代人口趋势的总结以及 ASU 采用创新基础设施和“系统创新方法”的努力(第 14 页)。
摘要 - 大米是印尼人口的主食之一,在国内生产总值(GDP)的形成中起着重要作用。但是,由于许多害虫攻击并导致农作物衰竭,其中之一是麻雀害虫。因此,使用超声声音进行了一项研究,以干扰害虫,以免降落并离开稻米植物。当鸟儿靠近并打破散布在大米植物上的激光束的电子网时,发出了超声声音。该原型是使用Nodemcu ESP32微控制器作为控制器和系统构建的。和Telegram用作辅助应用程序,以发出/关闭命令和电池百分比探测器,以促进使用。根据这项研究,原型的功能正常,并且被超声声音打扰,频率为0-22,000 Hz,声压水平在31.6-93.2分贝之间。关键字:ESP32,激光,大米,麻雀,超声波。
名称 Shrum 科学中心化学 Shrum 科学中心运动机能学 Shrum 科学中心物理 东南教室大楼 Strand Hall Strand Hall 附楼 Shadbolt 楼 Shell House 住宅 南科学楼 学生会楼 Saywell Hall
在从熔体中冷却时,pa(PU)经历了一系列结构性变速箱,伴随着在低温下从其휹相到휶相的体积降低了约28%。已知PU的部分填充5 f-电子壳涉及,但它们在转换中的确切作用仍不清楚。通过在휶-PU和凝胶稳定的휹 -PU上使用量热法测量,结合了共振剂超声和X射线散射数据,以说明晶格对晶格的异常软化,我们在这里显示,在这里,在Phonon Entropy差异上,电子熵的差异是电子熵之间的差异。而不是发现휶 -pu中宽F-电子带的电子特定热特征,正如预期在近kondo折叠相中可能与静脉相比,我们发现它表明其表明较高的子带。因此,提出了PU的5 F电子在其较大的单位细胞形成中扮演的重要作用,该相位包含不等晶格位点和键长的长度。
基于Elitzur-Vaidman炸弹测试仪,请参见:A.C。Elitzur和L. Vaidman,“无量子机械互动测量”。物理基础23,987(1993)。由John Donohue创建的IQC科学外展团队与IQC-OUTREACH@UWATERLOO.CA量子计算机研究所Quantum Computing Institute of Waterloo University of Waterloo of Waterloo 200 University Ave. W. W. W. W. W. Waterloo,N2L3G1版权所有滑铁卢大学。IQC的使命是通过在最高国际层面的跨学科合作来开发和推进量子信息科学技术。 由IQC独特的基础架构启用,世界顶级实验者和理论家在跨越量子计算,通信,传感器和材料的领域中取得了强大的新进步。 IQC屡获殊荣的外展机会促进了学生,老师和社区的科学好奇心和发现。 uwaterloo.ca/institute-for-quantum-computingIQC的使命是通过在最高国际层面的跨学科合作来开发和推进量子信息科学技术。由IQC独特的基础架构启用,世界顶级实验者和理论家在跨越量子计算,通信,传感器和材料的领域中取得了强大的新进步。IQC屡获殊荣的外展机会促进了学生,老师和社区的科学好奇心和发现。 uwaterloo.ca/institute-for-quantum-computingIQC屡获殊荣的外展机会促进了学生,老师和社区的科学好奇心和发现。uwaterloo.ca/institute-for-quantum-computing
可连接的触发器手柄•快速将您的设备转换为枪支样式,以捕获密集型应用程序。•手柄很容易捕捉到设备上,无需工具。•2针电气接口提供快速数据捕获。•不阻止摄像机或任何其他功能•在所有带有手柄的充电摇篮中起作用•可选的腕带(SG-MC2X-HSTRPH-01),橡胶靴(SG-MC2X-RBH2-01)和皮套(SG-MC2X-RBH2-01)和皮套(SG-MC3021212-01R)
摘要。轻量级传感器(例如眼动仪、生理腕带和运动传感器)的可访问性不断提高,使得学生在参与基于运动的教育游戏 (MBEG) 时能够提取他们的认知、生理、骨骼和情感数据。实时分析这些多模态数据 (MMD) 可以深入了解学生的学习体验,并为及时、情境化、个性化的反馈提供新的机会以支持学生。在这项正在进行的工作中,我们提出了 MMD-AI 学习代理;一个由 MMD 驱动的人工智能 (AI) 代理生态系统,由 3 个独立的软件组件组成,它们共同促进学生在与 MBEG 交互期间的学习。Crunch Wizard 从学生在游戏过程中佩戴的眼动仪、生理腕带、网络摄像头和运动传感器接收 MMD,并得出相关的认知、生理和情感测量值。 AI 代理识别并提供适当的反馈机制,以支持学生的 MBEG 游戏学习体验。仪表板将测量结果可视化,让教师了解学生的进步情况。我们讨论了推动生态系统设计的基础工作,介绍了我们迄今为止完成的设计和开发,并概述了未来的方向。
注:1. 尺寸以英寸为单位。2. 公制等效值仅供参考。3. 除非另有规定,公差为 ± .005 (0.13 mm)。4. 这些连接器与 MIL-DTL-55302/55 中规定的连接器配接。5. 应在连接器的侧面标记表示每行中第一个和最后一个位置以及其间每四个触点位置的数字。作为上述选项的一种选择,可在连接器的侧面印上表示每四个腔体的数字,但必须标记第一个触点。6. 端接布局在 .025 (0.64 mm) 模块化网格上。7. 公制等效值在括号中。8. 保形涂层间隙最小应为 .005 (0.13 mm)(可选设计不作要求)。9. 可选设计保形涂层间隙。 10. 内螺纹导向件的孔深最小为 0.282 (7.16 毫米)。内螺纹件的全螺纹深度最小为 0.240 (6.1 毫米)。11. 附件安装件(螺母)为选配,可单独提供(见图 1)。
注意:1. 尺寸以英寸为单位。 2. 公制单位仅供参考。 3. 除非另有规定,公差为 ± .005 (0.13 mm)。 4. 这些连接器使用适当的硬件与 MIL-DTL-55302/62、MIL-DTL-55302/64、MIL-DTL-55302/65、MIL-DTL-55302/66 和 MIL-DTL-55302/58 中规定的连接器配接。 5. 应在连接器的侧面标记表示每行第一个和最后一个位置以及其间每四个触点位置的数字。作为上述选项之一,可在连接器的侧面标记表示每四个腔体的数字,但必须标记一号触点。 6. 端接布局在 .020 (0.51 mm) 模块化网格上。 7. 括号中为公制单位。8. 手柄形状可选。9. 可选底切最大 0.050 (1.27 毫米),位于 PCB 侧,用于清洁。10. 六角形方向的位置可选。六角形不得突破绝缘体侧面。11. 内孔导向硬件的孔深最小为 0.282 (7.16 毫米)。内螺纹硬件的全螺纹深度最小为 0.240 (6.1 毫米)。