摘要:分子载体对于受控释放药物和基因以实现所需的治疗结果是必需的。DNA水凝胶可以在此应用中具有独特的序列依赖性程序能力,这可以是对特定货物分子的精确封装,并允许在目标上释放它们的刺激性响应性。然而,DNA水凝胶本质上易受核酸酶降解的敏感,使它们在生理环境中易受伤害。作为有效的分子载体,DNA水凝胶应能够保护包封的货物分子,直到到达目标并释放到目标后。在这里,我们开发了一种控制DNA水凝胶的酶电阻的简单方法,可通过使用阳离子介导的冷凝和膨胀来释放货物保护和释放。我们发现,通过精子凝结的DNA水凝胶对酶促降解具有高度抗性。,如果将钠离子通过干扰精子和DNA之间的相互作用的钠离子扩展到其原始的,无需的状态,它们再次变得可降解。DNA水凝胶的这些可控制的冷凝,膨胀和降解为开发DNA水凝胶作为有效分子载体的发展铺平了道路。关键字:DNA水凝胶,分子载体,刺激反应能力,体积变化,酶抗性■简介
摘要 随着信息任务的复杂性,二体和三体纠缠已经不能满足我们的需要,我们需要更多的纠缠粒子来处理相对论量子信息。本文研究了dilaton黑洞背景下Dirac场的真正N体纠缠和分布关系,给出了弯曲时空中所有物理上可及和不可及纠缠的一般解析表达式。我们发现,可及的N体纠缠随着黑洞dilaton的增加表现出不可逆的退相干,而不可及的N体纠缠则从零单调或非单调增加,取决于可及到不可及模式的相对数量,这与二体和三体纠缠中不可及纠缠只单调增加的情况形成了鲜明的对比。我们还发现了弯曲时空中可及和不可及的 N 部分纠缠之间的两种分布关系。这些结果让我们对霍金辐射有了新的认识。
1个动物癌症护理与研究计划,明尼苏达大学,明尼苏达州圣保罗大学。 2明尼苏达州圣保罗大学兽医学院兽医临床科学系。 3明尼苏达州明尼苏达州明尼阿波利斯大学的共济会癌症中心。 4佛罗里达大学兽医学院小动物临床科学系,佛罗里达大学盖恩斯维尔,佛罗里达州。 5佛罗里达大学佛罗里达大学健康癌症中心,佛罗里达州盖恩斯维尔大学。 6佛罗里达州盖恩斯维尔大学佛罗里达大学的智能重症监护中心。 7人工智能学术倡议(AI 2)中心,佛罗里达大学佛罗里达州盖恩斯维尔大学。 8明尼苏达州明尼苏达州明尼苏达大学的健康信息学研究所。 9明尼苏达州明尼苏达州明尼阿波利斯大学的干细胞研究所。 10医学系(明尼苏达州明尼苏达州明尼苏达州大学医学院血液学,肿瘤学和移植科),明尼苏达州。 11微生物学,免疫学和癌症生物学(MICAB)研究生课程,明尼苏达州明尼苏达州明尼苏达州,明尼苏达州。 12宾夕法尼亚州宾夕法尼亚大学血液学和肿瘤学系医学系,宾夕法尼亚州。 13 CAPSTAN THERAPEUTICS,加利福尼亚州圣地亚哥。 14明尼苏达大学明尼苏达大学明尼苏达大学明尼苏达大学的明尼苏达大学生物材料采购网络(Bionet)。 15明尼苏达州圣保罗大学兽医学院兽医医学系。 16 Janssen Research&Development,LLC。1个动物癌症护理与研究计划,明尼苏达大学,明尼苏达州圣保罗大学。2明尼苏达州圣保罗大学兽医学院兽医临床科学系。 3明尼苏达州明尼苏达州明尼阿波利斯大学的共济会癌症中心。 4佛罗里达大学兽医学院小动物临床科学系,佛罗里达大学盖恩斯维尔,佛罗里达州。 5佛罗里达大学佛罗里达大学健康癌症中心,佛罗里达州盖恩斯维尔大学。 6佛罗里达州盖恩斯维尔大学佛罗里达大学的智能重症监护中心。 7人工智能学术倡议(AI 2)中心,佛罗里达大学佛罗里达州盖恩斯维尔大学。 8明尼苏达州明尼苏达州明尼苏达大学的健康信息学研究所。 9明尼苏达州明尼苏达州明尼阿波利斯大学的干细胞研究所。 10医学系(明尼苏达州明尼苏达州明尼苏达州大学医学院血液学,肿瘤学和移植科),明尼苏达州。 11微生物学,免疫学和癌症生物学(MICAB)研究生课程,明尼苏达州明尼苏达州明尼苏达州,明尼苏达州。 12宾夕法尼亚州宾夕法尼亚大学血液学和肿瘤学系医学系,宾夕法尼亚州。 13 CAPSTAN THERAPEUTICS,加利福尼亚州圣地亚哥。 14明尼苏达大学明尼苏达大学明尼苏达大学明尼苏达大学的明尼苏达大学生物材料采购网络(Bionet)。 15明尼苏达州圣保罗大学兽医学院兽医医学系。 16 Janssen Research&Development,LLC。2明尼苏达州圣保罗大学兽医学院兽医临床科学系。3明尼苏达州明尼苏达州明尼阿波利斯大学的共济会癌症中心。4佛罗里达大学兽医学院小动物临床科学系,佛罗里达大学盖恩斯维尔,佛罗里达州。 5佛罗里达大学佛罗里达大学健康癌症中心,佛罗里达州盖恩斯维尔大学。 6佛罗里达州盖恩斯维尔大学佛罗里达大学的智能重症监护中心。 7人工智能学术倡议(AI 2)中心,佛罗里达大学佛罗里达州盖恩斯维尔大学。 8明尼苏达州明尼苏达州明尼苏达大学的健康信息学研究所。 9明尼苏达州明尼苏达州明尼阿波利斯大学的干细胞研究所。 10医学系(明尼苏达州明尼苏达州明尼苏达州大学医学院血液学,肿瘤学和移植科),明尼苏达州。 11微生物学,免疫学和癌症生物学(MICAB)研究生课程,明尼苏达州明尼苏达州明尼苏达州,明尼苏达州。 12宾夕法尼亚州宾夕法尼亚大学血液学和肿瘤学系医学系,宾夕法尼亚州。 13 CAPSTAN THERAPEUTICS,加利福尼亚州圣地亚哥。 14明尼苏达大学明尼苏达大学明尼苏达大学明尼苏达大学的明尼苏达大学生物材料采购网络(Bionet)。 15明尼苏达州圣保罗大学兽医学院兽医医学系。 16 Janssen Research&Development,LLC。4佛罗里达大学兽医学院小动物临床科学系,佛罗里达大学盖恩斯维尔,佛罗里达州。5佛罗里达大学佛罗里达大学健康癌症中心,佛罗里达州盖恩斯维尔大学。 6佛罗里达州盖恩斯维尔大学佛罗里达大学的智能重症监护中心。 7人工智能学术倡议(AI 2)中心,佛罗里达大学佛罗里达州盖恩斯维尔大学。 8明尼苏达州明尼苏达州明尼苏达大学的健康信息学研究所。 9明尼苏达州明尼苏达州明尼阿波利斯大学的干细胞研究所。 10医学系(明尼苏达州明尼苏达州明尼苏达州大学医学院血液学,肿瘤学和移植科),明尼苏达州。 11微生物学,免疫学和癌症生物学(MICAB)研究生课程,明尼苏达州明尼苏达州明尼苏达州,明尼苏达州。 12宾夕法尼亚州宾夕法尼亚大学血液学和肿瘤学系医学系,宾夕法尼亚州。 13 CAPSTAN THERAPEUTICS,加利福尼亚州圣地亚哥。 14明尼苏达大学明尼苏达大学明尼苏达大学明尼苏达大学的明尼苏达大学生物材料采购网络(Bionet)。 15明尼苏达州圣保罗大学兽医学院兽医医学系。 16 Janssen Research&Development,LLC。5佛罗里达大学佛罗里达大学健康癌症中心,佛罗里达州盖恩斯维尔大学。6佛罗里达州盖恩斯维尔大学佛罗里达大学的智能重症监护中心。7人工智能学术倡议(AI 2)中心,佛罗里达大学佛罗里达州盖恩斯维尔大学。8明尼苏达州明尼苏达州明尼苏达大学的健康信息学研究所。 9明尼苏达州明尼苏达州明尼阿波利斯大学的干细胞研究所。 10医学系(明尼苏达州明尼苏达州明尼苏达州大学医学院血液学,肿瘤学和移植科),明尼苏达州。 11微生物学,免疫学和癌症生物学(MICAB)研究生课程,明尼苏达州明尼苏达州明尼苏达州,明尼苏达州。 12宾夕法尼亚州宾夕法尼亚大学血液学和肿瘤学系医学系,宾夕法尼亚州。 13 CAPSTAN THERAPEUTICS,加利福尼亚州圣地亚哥。 14明尼苏达大学明尼苏达大学明尼苏达大学明尼苏达大学的明尼苏达大学生物材料采购网络(Bionet)。 15明尼苏达州圣保罗大学兽医学院兽医医学系。 16 Janssen Research&Development,LLC。8明尼苏达州明尼苏达州明尼苏达大学的健康信息学研究所。9明尼苏达州明尼苏达州明尼阿波利斯大学的干细胞研究所。10医学系(明尼苏达州明尼苏达州明尼苏达州大学医学院血液学,肿瘤学和移植科),明尼苏达州。11微生物学,免疫学和癌症生物学(MICAB)研究生课程,明尼苏达州明尼苏达州明尼苏达州,明尼苏达州。 12宾夕法尼亚州宾夕法尼亚大学血液学和肿瘤学系医学系,宾夕法尼亚州。 13 CAPSTAN THERAPEUTICS,加利福尼亚州圣地亚哥。 14明尼苏达大学明尼苏达大学明尼苏达大学明尼苏达大学的明尼苏达大学生物材料采购网络(Bionet)。 15明尼苏达州圣保罗大学兽医学院兽医医学系。 16 Janssen Research&Development,LLC。11微生物学,免疫学和癌症生物学(MICAB)研究生课程,明尼苏达州明尼苏达州明尼苏达州,明尼苏达州。12宾夕法尼亚州宾夕法尼亚大学血液学和肿瘤学系医学系,宾夕法尼亚州。 13 CAPSTAN THERAPEUTICS,加利福尼亚州圣地亚哥。 14明尼苏达大学明尼苏达大学明尼苏达大学明尼苏达大学的明尼苏达大学生物材料采购网络(Bionet)。 15明尼苏达州圣保罗大学兽医学院兽医医学系。 16 Janssen Research&Development,LLC。12宾夕法尼亚州宾夕法尼亚大学血液学和肿瘤学系医学系,宾夕法尼亚州。13 CAPSTAN THERAPEUTICS,加利福尼亚州圣地亚哥。 14明尼苏达大学明尼苏达大学明尼苏达大学明尼苏达大学的明尼苏达大学生物材料采购网络(Bionet)。 15明尼苏达州圣保罗大学兽医学院兽医医学系。 16 Janssen Research&Development,LLC。13 CAPSTAN THERAPEUTICS,加利福尼亚州圣地亚哥。14明尼苏达大学明尼苏达大学明尼苏达大学明尼苏达大学的明尼苏达大学生物材料采购网络(Bionet)。15明尼苏达州圣保罗大学兽医学院兽医医学系。 16 Janssen Research&Development,LLC。15明尼苏达州圣保罗大学兽医学院兽医医学系。16 Janssen Research&Development,LLC。17明尼苏达州明尼苏达州明尼苏达州大学科学与工程学院数学学院。18应用数学,科罗拉多大学博尔德大学,科罗拉多州博尔德。19,麻省理工学院和哈佛大学,马萨诸塞州剑桥。20人类生物学部,弗雷德
有机朗肯循环是将低品位热源转化为电能的可用解决方案之一。然而,由于膨胀机的特殊设计,工厂的开发往往非常昂贵。通常,设计 ORC 工厂的输入参数是热源和冷源的温度和功率。它们决定了工作流体、压力和温度的选择。然后根据所需的操作参数设计膨胀机。使用市场上容易买到且性能众所周知的标准涡轮机可以降低开发和制造成本。然而,必须对 ORC 进行调整,以使膨胀机在最佳条件下工作。对于太阳能聚光热源,可以通过调整聚光系数和集热器总面积来调整温度和功率。在本文中,考虑使用给定的燃气轮机作为 ORC 的膨胀机。了解涡轮机在空气中的性能后,基于相似规则寻找不同流体的 ORC 的最佳运行参数(压力、温度、流量和转速)。调整的目的是保持工作流体与空气相同的密度变化、相同的入口速度三角形和相同的入口马赫数。然后使用 CFD 模拟计算涡轮机的性能图,并显示最大等熵效率接近空气,约为 78%。
fi g u r e 6上排:挪威云杉和西伯利亚云杉的Rona地图(无适应性的风险),用于最重要的三个生物气候变量。根据Rellstab等人评估Rona。(2016),使用来自当前环境变量和等位基因频率的线性回归的变化系数。右下:平均RONA(最左侧的地块)和Rona在这两个物种和混合人群之间的每个生物气候变量。使用RONA值和与人口状态相对应的三级因子之间的线性回归测试了“纯”种群与杂种之间差异的显着性(P. Abies,P。obovata和Hybrid)。*** p <.001; ** p <.01; * p <.05; NS P> .05。地图线描绘了研究区域,不一定描绘了公认的国家边界。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
有机蛋白质因其独特的光学性质、卓越的机械特性和生物相容性而备受青睐。在有机蛋白质薄膜上制造多功能结构对于实际应用至关重要;然而,特定结构的可控制造仍然具有挑战性。在此,我们提出了一种通过调节有机材料的凸起和烧蚀在丝膜表面创建特定结构的策略。基于受控的超快激光诱导晶体形态转变和丝蛋白的等离子体烧蚀,产生了直径连续变化的独特表面形貌,如凸起和凹坑。由于不同周期的凸起/凹坑结构具有各向异性的光学特性,所制造的有机薄膜可用于大规模无墨彩色打印。通过同时设计凸起/凹坑结构,我们设计并展示了基于有机薄膜的光学功能装置,该装置可实现全息成像和光学聚焦。这项研究为多功能微/纳米结构的制造提供了一种有前途的策略,可以拓宽有机材料的潜在应用。
稳态破坏在分子和细胞水平上可见,并且通常会导致细胞死亡。这个至关重要的过程使我们能够通过保持不同的特征(遗传,代谢,生理和个人)完整来维持更广泛的系统的完整性。有趣的是,尽管细胞可以以不同的方式死亡,但垂死的细胞仍与环境进行交流。很长一段时间以来,这种交流才被认为是由于释放可溶性因素而被视为。然而,现在已经重新考虑了对细胞外囊泡(EV)的兴趣的日益考虑,这些囊泡(EV)是在不同调节的细胞死亡程序中释放的,并且观察到了特定效应。evs是细胞范式 - 细胞通信的游戏规则改变者 - 基本研究中关于非细胞自主功能以及生物标志物研究的巨大含义,所有这些功能都针对诊断和疗法目的。本评论由两个主要部分组成。首先是对整个Evfifferd的艺术状态的全面介绍。在第二部分中,我们重点介绍被发现在不同调节的细胞死亡程序中被发现的EV,也称为细胞死亡EV
摘要 — 为了确保这种新兴器件的可靠性,控制导电桥式随机存取存储器 (CBRAM) 中的细丝生长至关重要。在这里,我们证明了扫描焦耳膨胀显微镜 (SJEM) 可用于检测和精确定位工作中的交叉 CBRAM 器件中的导电细丝。基于 Pd/Al 2 O 3 /Ag 堆栈的柔性存储器件首先在低温下在聚酰亚胺基板上精心制作。这些器件在低压 (<2V) 下显示置位和复位操作,开/关比高于 10 4 。在低电阻状态下操作时,SJEM 振幅图像显示出单个导电细丝存在下的热点。在 50kHz 下提取的有效热扩散长度为 4.3µm,并且还证明了热膨胀信号与耗散的焦耳功率成正比。我们相信,所提出的程序为可靠性研究开辟了道路,可将其应用于任何基于细丝传导的存储器件系列。索引词——CBRAM、柔性电子、SJEM、长丝定位。