深度学习的最新进展提高了皮层下脑结构的分割精度,这将有助于许多神经系统疾病的神经影像学研究。然而,现有的大多数基于深度学习的神经影像学方法并没有研究分割极小但重要的脑区(如杏仁核亚核)时存在的具体困难。为了解决这一具有挑战性的任务,我们开发了一个双分支扩张残差 3D 全卷积网络,该网络具有并行卷积,以提取更多全局背景信息并通过保持一个与感兴趣区域 (ROI) 大小相同的小感受野来缓解类别不平衡问题。我们还在并行和串行中进行了多尺度特征融合,以补偿卷积过程中潜在的信息丢失,这对小物体来说非常重要。残差连接实现的串行特征融合通过提出的自上而下的注意力引导细化单元得到进一步增强,其中高分辨率低级空间细节被选择性地集成以补充高级但粗略的语义信息,从而丰富最终的特征表示。因此,与其他基于深度学习的方法相比,我们的方法产生的分割在体积和形态上都更准确。据我们所知,这项工作是第一个以深度学习为目标的杏仁核亚区域方法。我们还证明了使用周期一致的生成对抗网络 (CycleGAN) 协调多站点 MRI 数据的可行性,并表明我们的方法可以很好地推广到从多个中心收集的具有挑战性的创伤性脑损伤 (TBI) 数据集。这似乎是一种有前途的图像分割策略,可用于多站点研究和增加显著脑病理形态学变异性。
摘要Scisor。系统是一种计算机程序,旨在扫描受约束的文本自然出现的文本,提取信息并回答有关该信息的问题。该系统目前在公司合并和收购领域中读取报纸故事。Scisor使用的语言分析策略结合了完整的句法(底部)解析和概念性期望驱动的(自上而下)解析。四个知识来源,包括句法和语义信息以及域知识,以灵活的方式进行交互。这种信息产生了一个更强大的语义分析仪,旨在优雅地应对[Exical and stancactic知识中的差距,很容易地传输到新的事物上,并促进信息从文本中提取。
