摘要 - 该纸张利用机器学习算法来预测和分析财务时间序列。该过程始于一个deno的自动编码器,以从主合同价格数据中滤除随机噪声波动。然后,一维卷积会降低过滤数据的维度并提取关键信息。被过滤和降低的价格数据被馈送到GAN网络中,其输出作为完全连接的网络的输入。通过交叉验证,训练了模型以捕获价格波动之前的功能。该模型预测了实时价格序列的重大价格变化的可能性和方向,将交易置于高预测准确性的时刻。经验结果表明,使用自动编码器和卷积来过滤和DENOSIS财务数据,结合gan,实现一定程度的预测性能,验证了机器学习算法的能力,以发现财务序列中的基本模式。
摘要近年来,多室模型被广泛用于尝试从扩散磁共振成像 (dMRI) 数据中表征脑组织微观结构。这种方法的主要缺点之一是需要先验决定微观结构特征的数量,并将其嵌入模型定义中。然而,在给定采集方案的情况下可以从 dMRI 数据中获得的微观结构特征数量仍然不清楚。在这项工作中,我们旨在使用自动编码器神经网络结合旋转不变特征来表征脑组织。通过改变自动编码器潜在空间中的神经元数量,我们可以有效地控制从数据中获得的微观结构特征的数量。通过将自动编码器重建误差绘制到特征数量,我们能够找到数据保真度和微观结构特征数量之间的最佳权衡。我们的结果显示了该数字如何受到壳层数量和用于采样 dMRI 信号的 b 值的影响。我们还展示了我们的技术如何为更丰富地表征体内脑组织微观结构铺平道路。
最近的工作表明,稀疏的自动编码器(SAE)能够有效地发现语言模型中的人解释功能,从玩具模型到最先进的大语言模型等等。这项工作探讨了SAE的使用是否可以推广到机器学习的其他品种,特定的,加固学习,以及如何(如果有的话)将SAES适应这一实质上不同的任务所需的修改。本研究使用玩具加强学习环境来进行经验实验,研究了SAE代表强化学习模型作为可解释特征的能力的定性和定量度量。发现SAE成功地将深Q网络的内部激活分解为可解释的特征,此外,这些人解释的某些特征代表了对仅凭深度Q网络单独输出而无法发现的基本任务的内部理解。
在人类神经科学中,机器学习可以帮助揭示与受试者行为相关的低维神经表征。然而,最先进的模型通常需要大量数据集进行训练,因此很容易在人类神经成像数据上过度拟合,而这些数据通常只包含少量样本但输入维度很多。在这里,我们利用了这样一个事实:我们在人类神经科学中寻找的特征正是与受试者行为相关的特征,而不是噪音或其他不相关的因素。因此,我们开发了一种通过分类器增强的任务相关自动编码器 (TRACE),旨在识别与行为相关的目标神经模式。我们针对两个严重截断的机器学习数据集(以匹配单个受试者的功能性磁共振成像 [fMRI] 数据中通常可用的数据)对 TRACE 与标准自动编码器和其他模型进行了基准测试,然后根据 59 名观察动物和物体的受试者的 fMRI 数据评估了所有模型。 TRACE 的表现几乎完全优于其他模型,分类准确率提高了 12%,在发现“更清晰”、与任务相关的表示方面提高了 56%。这些结果展示了 TRACE 在处理与人类行为相关的各种数据方面的潜力。
摘要 - 随着多模式融合技术的快速发展,病理图像与基因组学数据的整合已在癌症生存预测中取得了令人鼓舞的结果。但是,大多数现有的多模型模型不是通过结合病理学和基因组学模态来预训练的,而忽略了不同模态之间固有的任务无关联的关联。尽管某些自我监督的方法通过预训练的目标(例如相关性和均方误差)来对齐多模式信息,但它们缺乏深入的多模式相互作用。为了解决这些问题,我们提出了Contramae,这是一种对比度对齐的掩盖自动编码器框架,以融合病理学图像和基因组学数据,以进行癌症存活预测。具体而言,我们引入了一个对比目标,以使多形态保持一致并构建其内在的一致性。此外,我们设计了两个重建目标,以通过互补偿双方所缺乏的信息来捕获多模式之间的复杂关系。在生存预测中,将Contramae编码器的病理和基因组学编码串联为产生生存风险评分的最终表示。实验结果表明,在五个癌症基因组图集(TCGA)中,CONTORAMA的表现优于五个癌症数据集的现有最新方法。该代码可从https://github.com/suixuewang/contramae获得。
1 香港大学计算机科学系 QICI 量子信息与计算计划,香港薄扶林道。2 香港大学计算机科学系人工智能技术实验室,香港薄扶林道。3 北京大学前沿计算研究中心。4 北京大学计算机学院。5 麻省理工学院理论物理中心。6 牛津大学计算机科学系,英国牛津帕克斯路 OX1 3QD。7 圆周理论物理研究所,加拿大安大略省滑铁卢 N2L 2Y5 Caroline Street North 31 号。8 香港大学深圳科研创新研究院,中国深圳市南山区月星二路。9 浙江大学计算机科学与技术学院,中国。
swath(1.4 km)。此外,凭借其太阳同步轨道,Cloudsat在同一当地时间经过赤道,将观察结果限制为在一天中的特定时间内“快照”。相比之下,成像仪器在更广泛的视野和更高的时间分辨率上进行测量,但它们仅提供“自上而下”的视角,并且不会直接测量大气曲线。但是,将不同光谱通道中的图像与大气轮廓重叠的测量结合在一起,可以推断雷达轨道以外的垂直轮廓。Barker等。[3,4]通过强度像素匹配,开发了一种将地球保健曲线扩展到3D的算法。最近的工作[5,6,7]使用了基于ML的方法(例如U-NET,CGAN,线性回归,随机森林,XGBoost),以从“自上而下”的测量中估算垂直云信息。特别是Brüning等人。[5]从MeteoSat第二代(MSG)旋转增强的可见和红外成像仪(Seviri)的卫星图像进行了训练,并具有Cloudsat Cloud Cloud Radar(CPR)反射率,重建3D云结构。对于所有方法,模型训练需要数据源之间的精确空间和时间对齐。由于雷达卫星的立交桥有限(图1b),轮廓测量值少于可用的图像(为了进行比较,MSG/Seviri每年产生40 TB的图像数据,而CPR每年产生150 GB)。然后,我们使用匹配的图像profile对进行了3D云重建任务的预训练模型。自我监督学习(SSL)的最新进展(SSL)在大型未标记数据集的训练前模型中表现出了希望,但它们在云研究中的应用仍然不足。在这项工作中,我们将SSL方法(MAE,MAE,[8])和GeoSpatemance Authewawe AutoCododers(基于Satmae,[9])应用于2010年的多光谱MSG/SEVIRI数据。我们的结果表明,预训练始终提高此任务的性能,尤其是在热带对流带等复杂地区。具有地理空间意识的预训练模型(即时间和坐标编码),尤其是胜过随机初始化的网络和更简单的U-NET体系结构,从而改善了重建结果。该代码将在接受后提供。
本文提出了一个有效的轻量级深空自动编码器(SRAE)模型,以检测视频监视系统中的异常事件。在时间至关重要的实时情况下,轻量级网络至关重要。此外,它可以部署在嵌入式系统或移动设备等低资源设备上。这使其成为现实情况可能缺乏资源的现实情况的方便选择。所提出的网络包括一个三层残留的编码器架构,该架构采用来获取视频中正常事件的显着空间特征。然后,重建损失被用于发现异常情况,其中正常框架的重建良好而重建损失较低,而异常的帧被发现相反。该模型的效率由两个基准数据集测试,加利福尼亚大学圣地亚哥大学(UCSD)行人2(PED 2)和CUHK Avenue,分别为两个数据集实现了AUC≈95%和81%。因此,其性能被证明与最先进的模型相媲美。
研究微生物组的常见程序是将测序的28个重叠群固定到元基因组组装的基因组中。当前,使用共同含量和基于序列的30个基序(例如四核苷酸频率)是Metagenome 31 binning的最先进的基于共同学习和序列的基于深度学习的方法。从基于对齐的分类得出的分类标签尚未被广泛使用。在这里,我们提出了一种基于半监督的双模式变异自动编码器的元基因组包装工具33,结合了Tetranu-34克利托德频率,与CONTIG共浸没量与CONTIG注释与任何分类分类级的35个分类级返回了35个。taxvamb在CAMI2 Human Microbiome数据集上的所有其他36个BINNER都优于所有其他36个Binner,平均返回40%37个接近完整的组件比下一个最佳BINNER。在实际的长阅读38个数据集上,税收vamb平均恢复了13%的接近完整垃圾箱和14%的39种。在单样本设置中使用时,平均退税量比VAMB高40 83%。taxvamb垃圾箱不完整的基因组比任何其他工具都要好41个,返回255%的高质量垃圾箱42不完整的基因组比下一个最好的binner。我们的方法具有43个研究和工业应用以及方法论新颖性,可以将44个可以通过半监视的多模式45个数据集转化为其他生物学问题。46
在肺动脉高压(PAH)的基因组学基因组学上取得了长足的进步,因为第六次世界上的肺动脉高压座研讨会,在几种新型基因中鉴定了稀有变体,以及赋予PAH风险中等的常见变体。基因和专家小组的变体策划现在为了解要测试哪些基因以及如何解释临床实践中的变体提供了一个强大的框架。我们建议将基因检测提供给有症状的PAH患者的特定亚组,以及患有某些类型的3组肺动脉高压(pH)的儿童。对无症状家庭成员的测试以及在生殖决策中使用遗传学需要参与遗传学专家。现在存在大量具有生物素质的PAH患者,并且已经开始扩展到非组1 pH。但是,这些同类人群主要是欧洲血统。更大的多样性对于表征导致pH风险和治疗反应的全基因组变异的全部程度至关重要。还合并了其他类型的OMIC数据。此外,为了推进基因和途径特异性护理和靶向疗法,基因特异性注册机构对于支持患者及其家人以及为基于遗传知情的临床试验奠定基础至关重要。这将需要患者/家庭,临床医生和研究人员之间的国际宣传和合作。最终,对患者衍生的生物测量,临床和杂音信息以及分析方法的协调将推进这一领域。
