引入激光束的特征辐射与物质的相互作用(诱导的吸收,自发发射,刺激发射)爱因斯坦的A和B系数和B系数和能量密度的表达。 LASER Action and the Conditions for LASER action (Population Inversion and Pumping, meta- stable state ) Requisites of a LASER system(Energy Source or Pumping Mechanism, Active medium and Resonant cavity (or) LASER cavity) Semiconductor LASER or Diode LASER (Principle, construction and working) Applications of LASER (LASER Barcode Reader, LASER打印机,激光冷却)模型问题和数值问题
尺寸反射率直接方法的测量缺乏足够的灵敏度来测量激光方面的超低反射率。但是,在过去的二十年中已经开发了各种指导方法[5] [6] [7]。在这项工作中,采用了马里兰州大学[8]开发的自发发射转换(SET)方法。此方法通过将ASE光谱转换为信号组件与大多数噪声正交的傅立叶域,从而提供了高信号与噪声比(SNR)。图5显示了SET方法与TFCALC建模结果之间的比较。实验和理论在光谱的长波长部分中非常吻合。在较短的波长处延伸的差异被认为主要是由于ASE信号低,因此该区域的SNR差。
在弯曲的时空中,量子闪光导致颗粒的自发发射。著名的是,如果弯曲的时空包含事件范围,则可以通过鹰效应[1,2]来散发成对的颗粒。但是,(静态)黑洞事件范围并不是导致粒子发射的唯一“时空曲率状态”。模拟空间是有效的波介质,可以在可配置的弯曲空间上进行桌面实验[3]。除了静态黑洞[4-10]外,还可以创建例如(静态)白洞事件范围[4,6,8,11 - 15],旋转几何形状类似于Kerr黑洞[16,17],扩展了宇宙[18-20]或什至(静态)两个马相互作用[21,22]。对于具有静态视野的这些系统,地平线上的波浪的经典频率转移一直是传统的基准来证明模拟重力物理学,尽管也观察到了无法与地平线相关的波浪的散射[6,11,11,13,23,24]。相关的颗粒对粒子的相关对被认为是量子鹰效应的明确标志[26,27],因此已经对流体系统进行了广泛的研究,其中已经研究了它们在各种色散方面的纠缠[28-37]。然而,这些研究并未对比地平线和无水平的自发发射,并且在其他模拟系统和许多模式中都没有做到这一点。ergo,时空曲率对重力类似物中量子发射的影响的问题出现了:是什么区别于地平线的发射(鹰效应)与地平线发射?在这封信中,我们使用分散模拟光学系统[4,6,8,12,38 - 40]证明了不同“时空曲率状态”之间的过渡。由于分散,每种频率模式在带有或不带有ho子的时空时都会经历不同的运动学。为了进一步查明物质,我们使用了一个系统,其中粒子是从一个点发出的:大约阶梯形的光学脉冲通过分散介质移动,我们在1D中考虑。脉冲强度通过光学KERR效应增加了介质的折射率N,从而产生了移动的折射率前部(RIF)。台阶下的光被增加的索引减慢,即,某些频率的光将在脉搏速度以下放慢速度并捕获到RIF中。这类似于黑洞事件范围内波的运动学[3,41,42]。在其他频率下,光线遵循不同的运动学场景(即,波浪的轨迹)。因此,这种简单的光学系统使我们能够在这些不同情况下对比量子发射。此外,存在散射的分析解决方案。我们介绍了RIF模式的所有可能的运动场景,从而解释了阶跃高度(索引变化中的幅度)和系统分布之间的相互作用如何产生时空曲率的不同状态。此外,我们使用对数负性量化了模式的两部分纠缠,这是单调的纠缠。然后,我们使用[43,44]中开发的一种分析方法来描述模式在RIF处的散射,并计算到时空曲率的每个策略中的自发发射。关键模式的纠缠光谱表示多模纠缠,这高度依赖于运动学方案。因此,我们完成了所有模式对之间在时空曲率的所有模式对之间计算的纠缠程度。
共振非弹性X射线散射(RIX)是一种广泛使用的光谱技术,可提供对原子,分子和固体的电子结构和动力学的访问。但是,RIX需要一个狭窄的带宽X射线探针才能达到高光谱分辨率。从X射线游离电子激光器(XFEL)传递能量单色光束(XFEL)的挑战限制了其在几次实验中的使用,包括用于研究高能量密度系统。在这里,我们证明,通过将XFEL自发自发发射(SASE)的测量与RIX信号相关联,使用神经代理的动态内核反卷入率,我们可以实现比起X-Ray bardeming x-ray barde-bardwidth bander-band banders off band barde the bard bands faster of the Electonic结构的分辨率。我们进一步展示了该技术如何允许我们区分Fe和Fe 2 O 3的价结构,并提供了对温度测量值以及温度温度化合物中的M壳结合能的估计值。
双原子分子代码 [VV Albert, JP Covey 和 J. Preskill, Robust encoding of a qubit in a molecule, Phys. Rev. X 10, 031050 (2020). ] 旨在将量子信息编码在双原子分子的方向上,从而能够校正小扭矩和角动量变化带来的错误。在这里,我们直接研究原子和分子平台固有的噪声——自发发射、杂散电磁场和拉曼散射——并表明双原子分子代码无法抵御这种噪声。我们推导出足以使代码免受此类噪声影响的简单条件。我们还确定了现有的并开发了新的吸收-发射 (Æ) 代码,这些代码比分子代码更实用,需要更低的平均动量,可以直接抵御任意阶的光子过程,并且适用于更广泛的原子和分子系统。
Muhammad Arif bin jalil物理系,马来西亚大学科学学院,81310 Johor Bahru,Johor,Johor,Malaysia,马来西亚摘要:一种在可见的和紫外线的贵族 - 基因激光器。氩离子激光器的可见和紫外线波长分别为408.9至686.1 nm和275至363.8 nm。1964年,威廉·布里奇斯(William Bridges)创建了氩离子激光。因为它们是由贵重气氩的电离物种制成的,因此这些连续波(CW)激光也称为离子激光器。氩离子的能级过渡在氩离子激光器的激光操作中起作用。氩离子激光器可能在可见光谱中产生多达100 W的能量。[28]关键字:激光,能源,增益培养基,吸收,自发发射,刺激发射,氩离子激光。
角度和极化选择性自发发射在染料掺杂的金属/绝缘体/金属纳米腔中Vincenzo Caligiuri*,Giulia Biffi,Milan Palei,Beatriz Martin-Garcia,Renuka devi Pothuraju,YannBretonnièredecionalverional verional ver v. v. v. v. v. v. v. V. V. V. V. V. Caligiuri,G。Biffi,M。Palei博士,B。Martin-Garcia博士,P.R。doi,意大利理工学院R. Krahne博士,通过Morego 30,16163 Italy Genoa,意大利电子邮件:roman.krahne@iit.it; vincenzo.caligiuri@iit.it V. Caligiuri物理系,卡拉布里亚大学,87036年,意大利G. Biffi Rende,R。D。Pothuraju,R。D。Pothuraju,化学和工业化学系,Genoa,Genoa,viaecaneso,Dodecaneso,31146,ITALOA,ITALY ECOL Y. BRETONIN,BRITENON,BRETENON。 Superieure de Lyon, CNRS UMR 5182, University Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France Keywords: Epsilon-Near-Zero, Polarized Spontaneous Emission, Push-Pull Chromanophores, Metal-insulator-Metal Cavities Directing and Polarizing the Emission of a Fluorophore is of FundaMental Importance in the
摘要 - 在这封信中,我们通过光学注射增益开关(GS)半导体纳米仪(SNLS)来研究光频梳(OFC)的产生。使用速率方程进行了计算,其中包括percell腔体增强的自发发射因子F和发射偶联因子β。在分析中,评估了F的影响,以改变主和从纳米剂之间的注射强度和频率不吻。通常,由于在广泛的参数空间上进行光学注射,可以实现注射锁定区域,其中生成的OFC具有宽10 dB的频率跨度(F 10),高载体与噪声比(CNR)和窄线路。此外,通过提高注入强度,可以进一步增强F 10和CNR。此外,F 10和CNR分别随着f的增加而减小和增加。这些新颖的发现是基于光子整合电路中光学注射的GS SNL的简单和紧凑源OFC来源的开发。
X射线 - 形式的相互作用本质上是弱的,X射线的高能量和动量对应用强光 - 耦合技术构成了巨大的挑战,这些耦合技术在更长的波长中非常有效地控制和操纵辐射。技术,例如在金属丝接口处或纳米结构内的光和电子之间增强的耦合,以及purcell效应(在金属表面附近自发发射,因此由于其根本不同的能量和动量尺度而不适用于X射线。在这里,我们提出了一种新的方法,用于通过将X射线光子与紫外线(UV)中的spps纠缠到铝制的自发参数下偏见(SPDC)中,将X射线耦合到表面等离子体极化子(SPP)。如本工作所示,SPP的不同特征印在检测到的X射线光子的角度和能量依赖性上。我们的结果突出了使用spps控制X射线的潜力,从而解开了激动人心的机会,以增强X射线 - 物质相互作用并探索具有原子尺度分辨率的等离子现象,这是X射线独特启用的功能。
第 2 部分:钙钛矿层光提取方向模拟细节考虑到 PeLEC 在自发发射模式下运行,我们考虑将一个方位角可变超过 360°(计算期间)的光学点偶极子放置在钙钛矿层内作为发光源。在 SI 图 S1(a) 中,有一个 PeLEC 的光发射提取曲线与点偶极子方向的组合,其中沿基底表面(即在小角度下)实现了最大提取效率,约为 13%。随着点偶极子方向角度的增加,提取效率急剧下降。根据发射光电场矢量模量图,参见 SI 图 S1(b),对于对提取效率贡献最大的较小角度(< 45°),观察到类似于各向同性的角度分布。在这种情况下,我们能够对点偶极子方向角上的提取效率进行平均,并确定平均提取效率,考虑到方位角,平均提取效率为 9.2%。因此,实验观察到的数据可以通过以下假设来解释:大部分 PeLEC 的光发射都被 Si 基板吸收。