自噬会导致耐药性和药物诱导的癌细胞毒性。针对自噬过程可以大大改善化疗效果。由于在临床环境中难以可靠地测量自噬水平,因此特定抑制剂或激活剂的发现受到了阻碍。我们通过将具有不同 ER/PR/Her2 受体状态的乳腺癌细胞系暴露于已知但不同的自噬诱导剂(每种诱导剂都有独特的分子靶点,即他莫昔芬、曲妥珠单抗、硼替佐米或雷帕霉素)来研究药物诱导的自噬。在自噬通量最早出现时提取的总 RNA 的差异基因表达分析显示了细胞和药物特异性变化。我们分析了差异表达基因列表,以找到一个共同的、与细胞和药物无关的自噬特征。所有药物均显著调节了 12 种 mRNA,其中 11 种通过 Q-RT-PCR 进行了正交验证( Klhl24 、 Hbp1 、 Crebrf 、 Ypel2 、 Fbxo32 、 Gdf15 、 Cdc25a 、 Ddit4 、 Psat1 、 Cd22 、 Ypel3 )。与药物无关的 mRNA 特征同样由线粒体靶向药物 MitoQ 诱导。对 KM-plotter 癌症数据库进行的计算机模拟分析表明,这些 mRNA 的水平在人类样本中是可检测到的,并且与乳腺癌预后结果相关,包括所有患者的无复发生存期 (RSF)、所有患者的总生存期 (OS) 和 ER + 患者的无复发生存期 (RSF ER +)。 Klhl24 、 Hbp1 、 Crebrf 、 Ypel2 、 CD22 和 Ypel3 水平高与更好的结果相关,而 Gdf15 、 Cdc25a 、 Ddit4 和 Psat1 水平低与乳腺癌患者预后较好相关。该基因特征揭示了候选自噬生物标志物,可在临床前和临床研究中进行测试,以监测自噬过程。
抽象简介。Sonodynanic Therapy(SDT)是一种有希望的非侵入性治疗方式,引起了人们对胰腺癌治疗(PC)的越来越多的关注。目前,自噬在PC的SDT中的作用尚不清楚。本研究旨在探索自噬在PC的SDT中的作用及其对PC细胞凋亡的影响。材料和方法。PC细胞(CAPAN-1和BXPC-3)与5-氨基乙酸(5-ALA)或/和/和/和超声(US)暴露(对照,5-ALA,US和SDT组)进行孵育,然后测量细胞凋亡和自动噬菌体。具体而言,分别使用CCK-8测定法,流式细胞仪和蛋白质印迹分析测量了细胞活力,凋亡和与凋亡相关蛋白(切割的CASPA-SE-3,BAX和BCL-2)的表达。用透射电子显微镜观察了线粒体形态,并伴随着与MITO共分配的自噬体标记物(LC3)的检测以及LC3II/I的蛋白质表达。在SDT处理之前,将自噬抑制剂3-MA和凋亡抑制剂Z-VAD分别添加到PC细胞培养物中,以评估自噬抑制对PC细胞中自噬的凋亡和凋亡抑制对自噬的影响。结果。与对照组相比,SDT组抑制细胞活力,细胞凋亡和自噬增强,而5-ALA和美国组的细胞活力,自噬和凋亡并未显着改变。此外,3-MA处理抑制了自噬和加速凋亡,而Z-VAD治疗减少了凋亡,但不会影响PC细胞的自噬。结论。自噬在经SDT处理的PC细胞中激活,并抑制自噬促进了PC细胞中的细胞凋亡。(Folia Histochemica et cytobiologica 2023,vol。61,编号3,172–182)
抽象的背景药理学自噬增强构成了预防或治疗大多数主要年龄相关疾病的临床上验证的策略。在此考虑的驱动下,我们在机器人化的荧光显微镜平台上对65,000种不同化合物进行了高含量/高吞吐量屏幕,以识别新型的自噬诱导剂。结果,我们报告了picropodophophlilin(PPP)作为自噬通量的有效诱导剂的发现,该诱导剂是在靶向上的作用,是胰岛素样生长因子-1受体(IGF1R)的酪氨酸激酶活性的抑制剂。因此,PPP失去了其在缺乏IGF1R或表达组成性活跃的Akt丝氨酸/苏氨酸激酶1(AKT1)突变体的细胞中的自噬刺激活性。使用对癌症的小鼠施用,PPP通过免疫原性细胞毒剂和程序性细胞死亡1(PDCD1(PDCD1,pd-1)的结合,提高了化学免疫疗法的治疗功效。当肿瘤对PPP不敏感或自噬不足时,这些PPP效应就会丧失。与化学疗法结合使用,PPP通过细胞毒性T淋巴细胞增强了肿瘤的浸润,同时还原了调节性T细胞。在人类三阴性乳腺癌患者中,IGF1R的激活磷酸化与抑制自噬相关,局部免疫力不利,预后不良。总结结论,这些结果表明,IGF1R可能构成一个新型且可吸毒的治疗靶标,用于与化学疗法结合进行癌症治疗。
摘要:自噬是真核细胞中发生的一种降解过程,以维持体内平衡和细胞存活。在营养缺乏、缺氧或给药等应激条件下,自噬被诱导以抵消可能导致细胞死亡的途径。在癌症中,自噬起着矛盾的作用,既充当肿瘤抑制因子(通过清除细胞中受损的细胞器并抑制炎症,或者通过促进基因组稳定性和肿瘤适应性反应),又充当促生存机制以保护细胞免受化疗等应激的影响。神经源性儿科实体瘤代表了各种儿童癌症,具有独特的解剖位置、细胞来源和临床表现。这些肿瘤是儿童发病和死亡的主要原因,新的分子诊断和治疗方法对于延长生存期和降低发病率是必不可少的。本文回顾了我们对自噬调节如何在儿童脑肿瘤实验模型中表现出抗肿瘤特性的理解进展,这些脑肿瘤包括髓母细胞瘤 (MB)、室管膜瘤 (EPN)、儿童低级别和高级别胶质瘤 (LGG、HGG)、非典型畸胎瘤/横纹肌样瘤 (ATRT) 和视网膜母细胞瘤 (RB)。我们还从临床角度讨论了针对自噬如何与这些特定的儿童肿瘤相关。
自噬和凋亡分别控制细胞内细胞器和蛋白质的周转以及生物体内细胞的周转,许多应激途径会在同一细胞内依次引发自噬和凋亡。通常,自噬会阻止凋亡的诱导,而凋亡相关的 caspase 激活会关闭自噬过程。然而,在特殊情况下,自噬或自噬相关蛋白可能有助于诱导细胞凋亡或坏死,并且自噬已被证明会过度降解细胞质,导致“自噬性细胞死亡”。自噬和细胞死亡途径之间的对话影响死亡细胞的正常清除以及对死细胞抗原的免疫识别。因此,自噬和凋亡之间关系的破坏具有重要的病理生理后果。
1 印第安纳大学医学院外科系,印第安纳波利斯,印第安纳州 46202,美国 2 西奈山医院伊坎医学院血液学和肿瘤内科系,纽约州纽约市 10029,美国 3 雅典国立与卡波迪斯特里安大学亚历山大医院临床治疗学系,希腊雅典 15772 4 威尔康奈尔医学院妇产科系,纽约州纽约市 10021,美国 5 雅典国立与卡波迪斯特里安大学莱孔综合医院血管外科分部第一外科系,希腊雅典 15772 6 雅典国立与卡波迪斯特里安大学希波克拉底综合医院预备外科第一系,希腊雅典 15772电话:+1-(917)-460-5107
致谢:这项工作由欧洲地区发展基金(ERDF),通过2020 Centro区域运营计划以及竞争的2020年竞争 - 竞争力和国际化运营计划以及葡萄牙国家基金通过FCT,项目下的Project [s]:expl/bia -bia -bqm/1361/2021/2020/2020/2020/2020/2020/2020/2020/2020/2020/2020年。PAS GRAS项目已从欧盟的地平线欧洲获得资金。H. Gerardo(SFRH/BD/147316/2019和COVID/BD/153559/2024)和J. Teixeira(2020.01560.Ceecind)承认FCT,I.P。研究合同。
在健康衰老和疾病中自然衰老自噬的意见/审查选项1:操纵自噬以促进健康衰老Yahyah Aman 1,3†,Tomas Schmauck-Medina 1†,Malene Hansen 4,Malene Hansen 4,Richard I Morimoto 5,Anna Katharina Simon 6,Anna Katharina Simon 6,Inna simon simens imenos 8 10,Terje Johansen 11,Nektarios Tavernarakis 8,12,David C. Rubinsztein 13,14,Linda Partridge 3,15,Guido Kroemer 16-20,John Labbadia 3,*和Evandro F. Fang 1,2挪威3号健康老化研究所,挪威健康衰老中心(NO-AGE),遗传学,进化与环境部,伦敦大学学院,达尔文大楼,加尔街,伦敦WC1E 6BT,英国,达尔文大楼。4 Sanford Burnham Prebys医疗发现研究所,发展,老化和再生计划,美国92037,92037,North Torrey Pines Road,North Torrey Pines Road 10901。5分子生物科学系,赖斯生物医学研究所,西北大学埃文斯顿,伊利诺伊州60208美国。6肯尼迪风湿病学研究所,牛津大学,英国牛津,牛津大学。 7 Healthy Emaging Institute and UCL癌症研究所,伦敦大学学院,伦敦WC1E 6JD,英国。 8研究与技术基金会分子生物学与生物技术研究所 - 赫拉斯,希腊,克里特岛,希腊。 和j.labbadia@ucl.ac.uk(J.L。) †这些作者同等贡献6肯尼迪风湿病学研究所,牛津大学,英国牛津,牛津大学。7 Healthy Emaging Institute and UCL癌症研究所,伦敦大学学院,伦敦WC1E 6JD,英国。 8研究与技术基金会分子生物学与生物技术研究所 - 赫拉斯,希腊,克里特岛,希腊。 和j.labbadia@ucl.ac.uk(J.L。) †这些作者同等贡献7 Healthy Emaging Institute and UCL癌症研究所,伦敦大学学院,伦敦WC1E 6JD,英国。8研究与技术基金会分子生物学与生物技术研究所 - 赫拉斯,希腊,克里特岛,希腊。和j.labbadia@ucl.ac.uk(J.L。)†这些作者同等贡献9,医学院,国家和卡普迪斯特里大学雅典大学,雅典10号,希腊10分子医学系基础医学研究所和癌细胞重编程中心,诺伊,奥斯陆奥斯陆大学医学院临床医学院临床医学研究所。11分子癌研究小组,特罗姆斯大学医学生物学研究所 - 挪威北极大学,挪威9037,挪威12号基础科学系,医学院,赫拉克里昂,克里特群岛,克里特大学,克里斯特大学,希腊大学,希腊大学,希腊大学13号剑桥医学研究所,剑桥大学训练室,坎布尔山脉,坎布尔山脉,坎布尔山脉,坎布尔山脉,坎布尔山脉,坎布尔·坎布尔·坎布尔·坎布尔·坎布尔·坎布尔·坎布尔·帕特里·帕特里·帕特罗夫·帕特里·帕特里克·帕特罗夫 0XY, United Kingdom 14 UK Dementia Research Institute, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom 15 Max Planck Institute for Biology of Ageing, Department Biological Mechanisms of Ageing, Cologne, Germany 16 Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France 17 Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France 18 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France 19 Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China 20 Karolinska瑞典斯德哥尔摩Karolinska大学医院妇女与儿童健康部研究所 *通信:e.f.fang@medisin.no(E.F.F.)
1 美国罗德岛州普罗维登斯市布朗大学沃伦·阿尔珀特医学院转化肿瘤学和实验癌症治疗学实验室,2 美国罗德岛州普罗维登斯市 Lifespan Health System 和布朗大学医学系血液学/肿瘤学部,3 美国罗德岛州普罗维登斯市 Lifespan Health System 和布朗大学癌症生物学联合项目,4 美国罗德岛州普罗维登斯市布朗大学癌症中心,5 美国宾夕法尼亚州费城天普大学刘易斯卡茨医学院,6 美国罗德岛州普罗维登斯市布朗大学沃伦·阿尔珀特医学院病理生物学研究生项目,7 美国罗德岛州普罗维登斯市布朗大学沃伦·阿尔珀特医学院外科系,8 美国罗德岛州普罗维登斯市布朗大学沃伦·阿尔珀特医学院病理学和实验室医学系
天然产物经过充分的特征,可以具有药理学或生物学活性,可以对癌症治疗具有治疗性有益,这也为发现潜在的新型小分子药物提供了重要的灵感来源。在过去的三十年中,积累的证据表明,天然产物可以调节一系列关键的自噬信号通路,并在不同类型的人类癌症中显示治疗作用。In this review, we focus on summarizing some representative natural active compounds, mainly including curcumin, resveratrol, paclitaxel, Bufalin, and Ursolic acid that may ultimately trigger cancer cell death through the regulation of some key autophagic signaling pathways, such as RAS-RAF-MEK-ERK, PI3K-AKT-mTOR, AMPK, ULK1, Beclin-1, Atg5 and p53。综上所述,这些鼓舞人心的发现将通过针对未来癌症治疗的自动噬菌学的关键途径来利用更多天然化合物作为候选小分子药物。