可再生能源的发展和对减少二氧化碳排放的运输方式的需求引起了人们对存储的新兴趣,存储已成为可持续发展的关键组成部分。储能是可再生能源工厂的主导因素。它可以减少电力波动,提高系统灵活性,并能够存储和调度风能和太阳能等可变可再生能源产生的电力。电力系统中使用不同的存储技术。它们可以是化学或电化学、机械、电磁或热存储[1-12]。一般来说,储能设施由存储介质、电力转换系统和工厂平衡组成。对于电化学存储,有许多不同类型的电池,其中大多数都需要进一步研究和开发。在光伏系统中,可以使用几种类型的电池:镍镉 (Ni-Cd)、镍锌 (Ni-Zn)、铅酸。然而,它必须具有一些重要的特性,例如高充电或放电效率、低自放电、循环充放电下的长寿命。对于氢能存储 (HES),氢气系统通常由电解器、加压气罐和燃料电池组成。电解器在发电过剩期间将电能转化为氢气形式的化学能。这种氢气被储存起来,直到电能短缺,然后由燃料电池(氢气和空气氧气)将其重新转化为电能,为发电厂的负载提供能量。氢气
要实现可持续发展的社会,不可避免地需要使用可再生能源来发电。由于其中一些能源(风能、太阳能)对天气的依赖性,必须使用公用事业规模的能源储存。这些波动范围从几分钟(云层飘过)到整个季节(冬季/夏季太阳能可用)。短期储存可以通过电池解决(至少在理论上)。然而,由于可储存能量的数量和某些储存方法的自放电,季节性储存仍然是近期需要解决的挑战。最近,在经典的长期储存技术(如抽水蓄能)中出现了新方法。电池越来越好,自放电更少,能量密度更大;因此,它们可以用于季节性储存,尽管它们不能满足总需求。因此,电转气方法(主要是电转氢,P2H 和电转甲烷,P2M)在储存组合中发挥着越来越大的作用。在这些方法中,多余的电力用于电解水并产生氢气;然后可以将其储存起来并在以后用于回收电力。由于长期储存氢气的技术困难,替代方法(例如电转甲烷或电转氨)也是有吸引力的解决方案。在电转甲烷技术中,可以通过化学或生物化学方法将添加二氧化碳的氢气转化为甲烷。甲烷可以储存起来并在以后用于回收电力。比较P2H和P2M方法,P2H的能量回收率更高,但无损储存和回收需要特殊设备。相比之下,对于P2M(即生产的甲烷SNG,即合成天然气),可以利用现有的储气设施进行储存,并通过现有的成熟方法(例如燃气发动机)进行回收。虽然电力回收与二氧化碳排放有关,但排放量与用于合成的二氧化碳相等;因此,该技术也可以被视为无碳技术。氢气转化为甲烷有两种成熟的方法:化学方法和生物化学方法。化学方法(即所谓的 Sabatier 反应)快速高效,但它是一种高压高温反应,需要在特殊设备中进行;此外,它可能需要难以获取的金属进行催化。尽管有时速度较慢,但生物化学法是一种利用微生物的低温低压方法;有些微生物甚至可以在沼气设施中找到。生物化学法的另一个优势是它可用于 CH 4 /CO 2 混合物,即它可以将沼气浓缩为 SNG。本期特刊专门介绍生物化学电转甲烷技术。P2M 技术现在即将全面投入工业使用;因此,专门介绍这种方法的特刊非常及时。本文涵盖的主题范围从基础生化研究到各种存储方法的比较,再到完整的能源存储解决方案。能源结构中依赖天气的可再生能源所占比例不断增加,迫使研究人员寻找新的能源存储解决方案,以满足时间平衡的需求。Sterner 和 Spechts [ 1 ] 在他们的论文中描述了 30 年的发展历史,这导致了“电转一切”(包括电转甲烷和其他电转燃料)技术的出现。
1. VRLA 技术 VRLA 代表阀控铅酸电池,这意味着电池是密封的。只有在过度充电或电池故障的情况下,气体才会通过安全阀逸出。VRLA 电池终身免维护。 2. 密封 (VRLA) AGM 电池 AGM 代表吸收性玻璃垫。在这些电池中,电解质通过毛细管作用被吸收到板之间的玻璃纤维垫中。正如我们在《无限能量》一书中所解释的那样,AGM 电池比胶体电池更适合短时间输送非常大的电流(发动机启动)。 3. 密封 (VRLA) 胶体电池 在这里,电解质被固定为凝胶。胶体电池通常比 AGM 电池具有更长的使用寿命和更好的循环容量。 4. 低自放电 由于使用铅钙板栅和高纯度材料,Victron VRLA 电池可以长时间存放而无需充电。20°C 时自放电率低于每月 2%。温度每升高 10°C,自放电率就会加倍。因此,如果保存在凉爽的条件下,Victron VRLA 电池可以存放长达一年而无需充电。 5. 卓越的深度放电恢复 Victron VRLA 电池具有卓越的放电恢复能力,即使在深度或长时间放电后也是如此。尽管如此,反复深度和长时间放电都会对所有铅酸电池的使用寿命产生非常负面的影响,Victron 电池也不例外。 6. 电池放电特性 Victron AGM 和 Gel Deep Cycle 电池的额定容量是指 20 小时放电,换句话说:放电电流为 0.05 C。Victron Tubular Plate Long Life 电池的额定容量是指 10 小时放电。有效容量随着放电电流的增加而降低(见表 1)。请注意,在恒定功率负载(如逆变器)的情况下,容量减少会更快。
1。收到电池或装有电池的新设备后,检查电池是否有撞击或损坏的迹象。2。如果有损坏的证据 - 通知电池或设备供应商的供应商,以提交损坏报告。3。在部署产品进行服务之前,为电池充电。使用与应用程序匹配的电池充电器在通风良好的区域内为电池充电。验证充电器是否已通过批准的充电算法或配置文件进行编程。4。fla深循环电池可以安全地存储并保存在您的库存中。将电池存储在凉爽干燥的位置,可保护电池免受元素的影响。深循环电池的化学反应允许休息时逐渐自放电,因此,当其充电状态(SOC)下降至65%至70%SOC时,应充电中的电池。注意保护电池库存免受冲击的影响,并使电池没有任何可能导致寄生负荷的连接。5。在热环境中存储(环境温度大于30°C / 86°F)会影响电池寿命。电池所有者应预期在较高的温度下加速自排放,并应采取预防措施避免将电池暴露于热源。热温存储条件将需要更频繁的维护充电和浇水服务。6。Crown Fla深循环电池由美国运输部,IATA,ICAO和IMDG的管辖,为UN2794 / 8类腐蚀性危险材料。7。这些电池仅限于表面和水运输模式,并禁止通过空气运输。FLA深循环电池和所有铅电池都可以回收,并应将其返回给授权的电池处理剂进行回收。有关电池回收的更多信息,请参阅www.batterycouncil.org。
1. VRLA 技术 VRLA 代表阀控铅酸电池,这意味着电池是密封的。只有在过度充电或电池故障的情况下,气体才会通过安全阀逸出。VRLA 电池终身免维护。 2. 密封 (VRLA) AGM 电池 AGM 代表吸收性玻璃垫。在这些电池中,电解质通过毛细管作用被吸收到板之间的玻璃纤维垫中。正如我们在《无限能量》一书中所解释的那样,AGM 电池比胶体电池更适合短时间输送非常大的电流(发动机启动)。 3. 密封 (VRLA) 胶体电池 在这里,电解质被固定为凝胶。胶体电池通常比 AGM 电池具有更长的使用寿命和更好的循环容量。 4. 低自放电 由于使用铅钙板栅和高纯度材料,Victron VRLA 电池可以长时间存放而无需充电。20°C 时自放电率低于每月 2%。温度每升高 10°C,自放电率就会加倍。因此,如果保存在凉爽的条件下,Victron VRLA 电池可以存放长达一年而无需充电。 5. 卓越的深度放电恢复 Victron VRLA 电池具有卓越的放电恢复能力,即使在深度或长时间放电后也是如此。尽管如此,反复深度和长时间放电都会对所有铅酸电池的使用寿命产生非常负面的影响,Victron 电池也不例外。 6. 电池放电特性 Victron AGM 和 Gel Deep Cycle 电池的额定容量是指 20 小时放电,换句话说:放电电流为 0.05 C。Victron Tubular Plate Long Life 电池的额定容量是指 10 小时放电。有效容量随着放电电流的增加而降低(见表 1)。请注意,在恒定功率负载(如逆变器)的情况下,容量减少会更快。
第1章 概念介绍 简介:飞轮储能:飞轮储能是利用电动机带动飞轮高速旋转,将电能转化为机械能储存起来,在需要的时候,飞轮带动发电机发电。飞轮系统工作在高真空环境中,具有无摩擦损耗、风阻小、寿命长、不影响环境、免维护等特点,适用于电网调频、电能质量保障等,但也存在能量密度低、保证系统安全成本高等缺点,其优势不能小规模体现,目前主要用于电池系统的补充。 飞轮:飞轮储能是一种将电能以动能形式储存起来的智能方法,其技术思路是,需要储存的多余电能驱动电动机,电动机每分钟带动飞轮旋转数千转,将动能储存起来。飞轮由于被悬浮在带有磁铁和高效轴承的真空腔中而可以轻松移动。储存的动能就是飞轮的动量,可以驱动作为系统另一部分的发电机发电。飞轮系统的主要优点是维护成本低、预期寿命长、响应速度快、往返效率约为 90%。主要缺点是成本高、自放电风险高、仅适用于较小容量(3 kWh 至 130 kWh)[18]。关键技术:飞轮储能目前处于实验阶段,主要存在五个技术问题:飞轮转子、轴承、能量转换系统、电动机/发电机和真空腔。1. 飞轮转子。飞轮转子是飞轮储能系统中最重要的部分。整个系统的能量转换依赖于飞轮的旋转。有必要根据转子动力学设计开发强度高、结构合适的飞轮。 2.支撑轴承 支撑高速飞轮的轴承技术是制约飞轮效率和寿命的关键因素之一。 3.能量转换系统 飞轮储能系统的核心是电能与机械能的转换,调节转换过程的能量输入与输出,协调频率和相位。能量转换单元决定系统的效率,支配飞轮系统的运行。 4.发电机/电动机 飞轮储能转子的高转速导致飞轮电机的转速也高,这就要求飞轮电机系统具有高效率、低功耗、高可靠性等特点。目前永磁电机的研究主要集中在降低损耗和解决永磁体的温度敏感性上。5.真空室真空室是飞轮储能系统的辅助系统,使系统不受外界环境的影响。
简介高级电池化学的简短历史和概述:第一个锂离子电池原型流行锂(ION)细胞类型:电池是什么?铅酸电池是由什么制成的?铅酸电池构建块铅酸电池如何工作?什么是电化学过程?什么是由锂(离子)电池制成的?锂(离子)电池构建块在典型的锂电池中有多少锂?锂电池原材料是锂(离子)电池如何工作的?锂(离子)电池电化学过程如何工作?锂电池和锂离子电池有什么区别?电池有何不同?电池技术要么是“主要”不可充电或“次要”,而且可充电!什么是主电池?什么是二次电池?电池的工作电压不同。什么是名义电压?什么是开路电压?铅酸电池的标称电压为每个细胞的2.0伏。碱性细胞的名义电压为每个细胞1.5伏。锂金属细胞的标称电压从1.50V/细胞到3.70V/细胞。锂(离子)细胞有多种化学物质,并具有不同的标称电压。NICD(镍镉)和NIMH(镍金属氢化物)细胞通常输出1.20-1.25 V/细胞名称。什么是当前?什么是权力?什么是放大器?什么是电压?什么是阻力?什么是当前?什么是权力?什么是放大器?什么是电压?什么是阻力?欧姆定律:说明当前(放大器),电阻(欧姆)和电压之间的关系。瓦特法律:说明功率(瓦特),电流(放大器)和电压之间的关系。电池具有不同的功率和能量密度?什么是权力?功率的最简单定义是“完成工作的速度”。什么是功率密度?功率密度的最简单定义是“音量单位中的功率量”或“能量可以传递的时间速率”。什么是能量?能量的最简单定义是“工作能力”“或水箱中的水”。什么是能量密度?能量密度的最简单定义是:“给定质量,体积或空间中的能量量”。能量密度以两种方式解释。什么是重量的能量密度?什么是体积能量密度?什么是有用或可用的能量?可用的能源与可用能源有何不同?温度如何影响锂电池?热量杀死所有电池!温度如何影响锂电池电化学反应?温度如何影响锂电池组件或构件?温度如何影响锂电池的电荷状态?温度如何影响锂电池自放电过程?温度如何影响锂电池电源电子设备或BMS?与铅酸相比,锂电池是否更有效,更快?您可以为锂电池充电多快?快速充电锂电池具有折衷的快速充电技术快速充电如何为锂LifePo4(LFP)电池充电如何快速充电Lithium LifePo4(LFP)电池?如何为锂LifePo4(LFP)电池充电?发现锂LifePo4(LFP)电池的电池很快。发现DLX钛锂(LTO)电池的充电非常快。如何充电发现DLX钛锂(LTO)电池磷酸铁锂(LifePo4)电池优势