2016 年 8 月 – 2021 年 7 月 欧盟委员会 – COMPASS:通过扰动控制轨道机动以应用于空间系统 太空通过为地球提供服务而造福人类。未来的太空活动得益于太空转移而发展,并受到太空态势感知的保障。自然轨道扰动是导致轨迹偏离标准二体问题的原因,增加了轨道控制的要求;而在太空态势感知中,它们会影响太空垃圾的轨道演变,这些垃圾可能会对可能与地球相交的运行航天器和近地物体造成危害。然而,该项目建议利用自然轨道扰动的动力学来显着降低目前极高的任务成本,并为太空探索和开发创造新的机会。 COMPASS 项目将通过开发通过轨道扰动“冲浪”进行轨道机动的新技术,跨越轨道动力学、动力系统理论、优化和太空任务设计等学科。使用半分析技术和动态系统理论工具将为重新理解轨道扰动的动力学奠定基础。我们将开发一个优化器,逐步探索相空间,并通过航天器参数和推进机动来控制扰动的影响,以达到所需的轨道。COMPASS 的目标是从根本上改变当前的太空任务设计理念:从抵消干扰到利用自然和人为扰动。网址:www.compass.polimi.it
量子计算是一种新的计算范式,有望有效模拟量子力学系统。然而,与工业相关的分子尺寸相比,嘈杂的中型量子 (NISQ) 设备提供的硬件范围仍然很小。本文引入了增量法 (MI),以帮助加快 NISQ 设备在量子化学模拟中的应用。MI 方法将分子系统的电子关联能量表示为轨道、原子、分子或碎片的截断多体展开。在这里,系统的电子关联以占据轨道的形式展开,并采用 MI 方法系统地减少占据轨道空间。同时,虚拟轨道空间基于冻结自然轨道 (FNO) 减少,FNO 是使用二阶多体微扰理论的单粒子密度矩阵获得的。这样,构建了一种称为 MI-FNO 方法的方法,用于系统地减少量子化学模拟中的占用空间和虚拟空间。然后可以通过任何算法(包括相位估计算法和变分量子特征值求解器等量子算法)求解由 MI-FNO 减少引起的子问题,以预测分子系统的相关能量。在 cc-pVDZ 基组内,针对小分子(即 BeH 2 、CH 4 、NH 3 、H 2 O 和 HF)的情况,研究了 MI-FNO 方法的准确性和可行性。然后,使用对工业相关的中型催化剂分子(“受限几何”烯烃聚合催化剂)的量子比特计数估计,研究了所提出的框架对于实际工业应用中使用的较大分子的有效性。我们表明,即使采用适度截断虚拟空间,MI-FNO 方法也能将量子比特需求减少近一半。这样一来,我们的方法可以促进基于较小但更现实的化学问题的硬件实验,从而有助于表征 NISQ 设备。此外,降低量子比特需求有助于扩大可在量子化学应用中模拟的分子系统的大小,从而大大增强大规模工业应用的计算化学研究。