执行摘要 英国在航空航天技术开发方面拥有悠久的历史,包括其大学、学术机构和研究与技术组织内成熟的研究能力。ATI 的 FlyZero 项目建议将液态氢作为燃料来源,这将是自燃气轮机推出以来航空航天技术领域最大的颠覆者。如果英国要保持其市场份额,向液态氢的过渡将需要大量快速开发新技术;英国已经在许多这些领域拥有优势,并以强大的研究基础和创新的工业研发网络为基础。尽管如此,氢燃料储存和输送系统将需要比目前工业或学术界对低温氢行为的更深入的了解。因此,ATI 的氢能力网络 (HCN) 已经确定需要加强英国的研究以支持燃料系统技术开发,特别关注基础和前规范研究,以确保这些知识能够在整个英国航空航天供应链中得到利用。
比尔·赫尔姆斯 (Bill Helms) 是航天港工程与技术理事会仪器部门的负责人,也是帮助肯尼迪航天中心发展成为航天港技术中心的重要力量,他在肯尼迪航天中心的 NASA 担任政府职务 35 年后退休。“能够加入阿波罗和航天飞机发射团队,并为航天飞机和空间站处理开发新技术,令人兴奋且收获颇丰,”赫尔姆斯说道。“但我在 NASA 的 35 年中最难忘的记忆是我在肯尼迪航天中心和 NASA 的朋友和同事的能力、奉献精神和专业精神。”赫尔姆斯的政府职务始于土星运载火箭操作测量部门的一名工程师,在那里他为阿波罗登月发射实施并操作了第一个危险气体检测系统。在阿波罗发射团队工作七年后,赫尔姆斯加入了设计工程理事会,在那里他领导了航天飞机危险气体检测、氢气泄漏和火灾检测以及自燃蒸汽检测系统的开发。航天飞机危险气体检测系统被使用
• 美国宇航局的《战略计划》(2022 年)概述了具体的技术开发活动,这些活动指导该机构“创新和推进变革性空间技术” • 对于空间运输领域,一个典型的高影响空间技术领域是使用低毒或“绿色”火箭推进剂,与传统的自燃推进剂相比,这些推进剂表现出良好的空间储存性、Isp 性能和地面处理能力 • 先进航天器高能无毒 (ASCENT 推进剂)(以前称为 AF-315E)的 Isp 密度比肼高 50%,并已在包括绿色推进灌注任务 (GPIM, 2019) 和月球手电筒 (2022) 在内的任务中得到验证 • 绿色推进双模式 (GPDM) 项目旨在利用 ASCENT 的离子液体特性,将其用作化学和电喷雾推进的双模式推进剂,在 6U 立方体卫星上使用通用推进剂罐/进料系统计划于 2025 年底发射的飞行演示 • GPDM 是一项由 MSFC 牵头、SST/STMD 资助的活动,NASA、大学和行业合作伙伴(由拨款和 SBIR/STTR 计划资助)共同开发飞行部件,并将支持特定的任务操作活动
对更高能量密度的不懈追求对电池安全性提出了挑战。[8,9] 更薄的隔膜会增加穿孔的危险,而锂金属的使用则有可能引起枝晶穿透和短路。发生短路时,快速自放电产生的大电流通过低电阻电子通路产生焦耳热,使隔膜和电极材料的温度达到击穿点(150-250°C),[10] 引发一系列放热反应和热失控。[11,12] 内部短路可能是由机械变形(例如在钉刺试验期间 [13,14] )和过度充电等外部原因引起的,但也可能由于没有明显的外部原因而发生,例如最近发生的停放电动汽车自燃事件。[15] 推测的机制包括电池中导电丝的生长,最终会穿透隔膜并使电池短路。 [16] 目前已开发出各种防止和管理锂离子电池热失控的方法,包括压力释放孔、[17] 防止过度充电的先进电池管理系统、设计为断裂以便电子隔离短路的集电器,[18] 以及阻燃添加剂。[19]
废物能量处理是一项国际挑战,许多国家都积极参与处理废弃或不合格的炸药、推进剂、过时弹药、过去冲突中未爆炸的弹药、采矿和石油压裂作业产生的废弃炸药、烟花和其他自燃材料。CHC 爆炸物废物处理设施是美国仅有的三家接受和处理爆炸性危险废物的成熟商业设施之一。国防部 (DoD) 拥有和运营着许多处理设施,用于处理废弃的军用炸药、弹药和推进剂。最近,路易斯安那国民警卫队被要求签订一个新的热处理系统,以处理路易斯安那州明登营的 1500 万磅 M-6 推进剂和 300 万磅其他炸药。明登营对话小组从众多提议技术中挑选出一套密闭燃烧炉和相关污染消除系统,并获得了环境保护署 (EPA) 的批准,用于处理大量单一推进剂和清洁燃烧点火器。该系统已安装完毕,承包商 Explosive Service International Inc. (ESI) 已销毁超过 1100 万磅的 M-6,预计 2017 年 5 月完工。
对更高能量密度的不懈追求对电池安全性提出了挑战。[8,9] 更薄的隔膜会增加穿孔的危险,而锂金属的使用则有可能引起枝晶穿透和短路。发生短路时,快速自放电产生的大电流通过低电阻电子通路产生焦耳热,使隔膜和电极材料的温度达到击穿点(150-250°C),[10] 引发一系列放热反应和热失控。[11,12] 内部短路可能是由机械变形(例如在钉刺试验期间 [13,14] )和过度充电等外部原因引起的,但也可能由于没有明显的外部原因而发生,例如最近发生的停放电动汽车自燃事件。[15] 推测的机制包括电池中导电丝的生长,最终会穿透隔膜并使电池短路。 [16] 目前已开发出各种防止和管理锂离子电池热失控的方法,包括压力释放孔、[17] 防止过度充电的先进电池管理系统、设计为断裂以便电子隔离短路的集电器,[18] 以及阻燃添加剂。[19]
在 III-V 族胶体量子点 (CQD) 半导体中,与许多光敏材料候选物相比,InSb 有望获得更广泛的红外波长范围。然而,实现必要的尺寸、尺寸分散性和光学特性一直具有挑战性。本文研究了与 InSb CQD 相关的合成挑战,发现锑前体的不受控制的还原会阻碍 CQD 的控制生长。为了克服这个问题,开发了一种将非自燃前体与卤化锌添加剂相结合的合成策略。实验和计算研究表明,卤化锌添加剂会减缓锑前体的还原,从而促进尺寸更均匀的 CQD 的生长。还发现卤化物的选择可以额外控制这种效应的强度。所得 CQD 在 1.26-0.98 eV 的光谱范围内表现出明确的激子跃迁,同时具有强光致发光。通过实施合成后配体交换,实现了胶体稳定油墨,从而能够制造高质量的 CQD 薄膜。首次演示了 InSb CQD 光电探测器,在 1200 nm 处达到 75% 的外部量子效率 (QE),据了解,这是无重金属红外 CQD 设备中报告的最高短波红外 (SWIR) QE。
暴露限制:无监管限制;密封物品。个人防护设备 (PPE) 眼睛防护:符合 ANSI Z87.1 标准或同等标准的工业安全眼镜。手套:处理密封单元时无需佩戴。服装:建议穿着高棉含量服装 (>65%),以及导电鞋或腿部保护器、腕部保护器和静电耗散外套,以避免静电积聚。呼吸防护:处理密封单元时无需佩戴。通风:处理密封单元时无需佩戴。其他防护:未注明。工程控制:建议接地或其他控制以减少静电积聚。暴露指南:在处理密封单元时,该产品不太可能发生可测量的暴露。9.物理和化学特性 a) 外观:金属军械硬件 b) 气味:无味 c) 气味阈值:不适用 d) 25°C 时的 pH 值:不适用 e) 熔点/凝固点:不适用 f) 沸点:不适用 g) 闪点:不适用 h) 蒸发速率:不适用 i) 可燃性:不适用 j) 可燃性/爆炸极限:不适用 k) 蒸气压:不适用 l) 蒸气密度:不适用 m) 相对密度:大于 1 n) 在 H 2 O 中的溶解度:不溶 o) 分配系数:不适用p) 自燃温度:500 F (260 C)
氨被越来越多地视为一种可行的替代燃料,它可以显著减少温室气体排放,而无需对现有发动机技术进行重大改造。然而,其高自燃温度、低火焰速度和窄可燃性范围带来了重大障碍,特别是在高速燃烧条件下。本综述探讨了氨作为内燃机可持续燃料的潜力,重点介绍了其优势和挑战。本综述借鉴了从 NH 3 的生产、应用到燃烧机制的广泛研究,探索了在火花点火和压燃发动机中增强 NH ₃ 燃烧的各种策略。讨论的基本原理和关键方法包括使用氢和碳氢化合物燃料作为燃烧促进剂,这已被证明可以改善点火和火焰传播。研究了有关燃料喷射策略(例如端口燃料喷射、直接喷射和双燃料喷射)的文献,以突出它们对 NH ₃ -空气混合和燃烧效率的影响。此外,本综述还深入探讨了低温等离子点火、湍流喷射点火和激光点火等先进点火技术,以期探索克服 NH ₃ 点火困难的潜力。经过对文献的全面分析,智能液气双流体共喷射系统 (iTFI) 成为一种有前途的方法,通过更好的燃料-空气混合物制备,提供更好的燃烧稳定性和效率。通过综合现有研究,本综述概述了 NH ₃ 燃烧的进展,并确定了需要进一步研究的领域,以充分发挥其作为可持续燃料的潜力。
危险!可燃液体和蒸气。吸入有害。吞咽有害或致命。引起呼吸道和眼睛刺激。可能引起过敏性皮肤反应吸入高浓度蒸气可能会影响中枢神经系统。反复接触高浓度蒸气可能会刺激呼吸系统并对大脑和神经系统造成永久性损伤。高浓度蒸气会引起头痛、头晕、嗜睡和恶心,并可能导致昏迷。可进入肺部并造成损害。远离热源和火焰。请勿吸入蒸气或雾气。请勿吞咽。请勿接触皮肤或衣物。避免接触眼睛。在使用前,请将容器紧闭密封。操作后彻底清洗。在使用和干燥期间及之后,提供新鲜空气通风。避免吸入使用此制剂时产生的灰尘、微粒、喷雾或雾气。根据需要使用个人防护设备。危险——如果处理不当,被洪水半透明醇酸树脂/油污浸湿的碎布、钢丝绒或废弃物可能会自燃。每次使用后,立即将碎布、钢丝绒或废弃物放入密封的装满水的金属容器中。急救:如果吞下,用水漱口(仅在患者意识清醒时)。立即就医。除非医务人员指示,否则不要催吐。如果进入眼睛,用水冲洗 15 分钟。检查是否有隐形眼镜并取下。如果接触,立即用大量水冲洗皮肤,同时脱下受污染的衣服和鞋子。如果出现刺激,请就医。如果吸入,请移至新鲜空气处。立即就医。含有异噻唑啉酮。可能引起过敏反应。请存放在儿童接触不到的地方。对于工作场所使用,可从零售商处获取 SDS,或致电 (412) 492-5555。紧急泄漏信息:(412) 434-4515(美国)。