摘要。多层光转换(MPLC)提供了自适应光学器件的替代方法,用于将湍流腐败的自由空间光束耦合到单模光纤或波导中。最近发布的测试结果表明,这种转换设备比自适应光学系统具有可比性或更好的性能。为了更好地了解设备特性,进行了模拟,以量化不同湍流强度和Hermite数量的功率损失 - 转换过程中使用的高斯模式。特定的病例研究是由美国陆军研究实验室开发的原型自由空间激光通信系统。拟议的仿真和统计结果报告了。还讨论了MPLC后梁功率组合器的分析。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.oe.61.11.116104]
• 偏振纠缠 实现 • 宽带和单独信道纠缠 实现 • 下一步 基于纠缠的 QKD 多用户 QKD 全光纤集成、基于 WDM 的纠缠光子源,面向多用户 QKD
自由空间光通信 (FSO) 作为一种有前途的技术,正受到越来越多的关注,以克服日益拥挤的无线市场的带宽短缺问题。目前,射频 (RF) 技术难以应对日益增长的高带宽数据需求。此外,随着用户数量的增加,RF 频谱变得如此拥挤,以至于几乎没有空间提供新的无线服务,此外,使用 RF 频段的带宽限制有限,并且必须为此类频段支付许可费,这还带来了额外的不便。FSO 通信与其他替代方案相比具有明显的优势,例如更窄、更安全的波束、几乎无限的带宽以及对使用光频率和带宽没有监管政策。此外,在太空领域,由于与 RF 相比,FSO 技术的质量和功率要求较低,因此对卫星通信系统来说,FSO 技术正变得越来越有吸引力。基于 FSO 技术部署无线链路的主要缺点是光波在湍流大气中传播时会受到扰动。会产生许多影响,其中最明显的是信号承载激光束辐照度(强度)的随机波动,这种现象称为闪烁,由闪烁指数 (SI) 量化。FSO 链路中随机辐照度波动的统计分析是通过概率密度函数 (PDF) 进行的,从中可以获得其他统计工具来测量链路性能,例如衰落概率和误码率 (BER)。如今,辐照度数据最广泛的模型是 Lognormal (LN) 和 Gamma-Gamma (GG) 分布。尽管这两种模型在大多数情况下都符合实际数据,但它们都无法在所有大气湍流条件下拟合有限接收孔径尺寸的辐照度数据,即在存在孔径平均的情况下。此外,在某些情况下,LN 或 GG 模型似乎都无法准确拟合辐照度数据,特别是在 PDF 的左尾。本文介绍的工作致力于提出一种新的模型,用于在存在孔径平均的情况下,大气湍流下的 FSO 链路中的辐照度波动;从而得到指数威布尔 (EW) 分布。在这里,使用半启发式方法来找到一组将 EW 参数直接与 SI 相关联的方程。经过测试,这些表达式可以很好地拟合辐照度数据的实际 PDF。提供了新模型出现的物理依据,以及弱到强湍流状态下的大量测试场景(包括数值模拟和实验数据),以评估其在 PDF 和衰减概率方面对辐照度数据进行建模的适用性。此外,
10 GBIT S -1单极量子量子hamza dely +,Thomas Bonazzi +,Olivier Spitz,Etienne Rodriguez,Djamal Gacemi,Yanko Todorov,Yanko Todorov,konstantinos pantzas,gruegoire lian lian lian lian lian gayne gbit S -1自由空间数据传输Linfield,FrédéricGrillot,Angela Vasanelli,Carlo Sirtori* +这些作者对这项工作也同样贡献了H. Dely,T。Bonazzi,E。Rodriguez博士,D。 NEUniversité,de Paris大学,24 Rue Lhomond,75005 Paris,法国电子邮件:carlo.sirtori@ens.fr O. Spitz 博士、F. Grillot 教授 LTCI、巴黎电信、巴黎综合理工学院,19 Place Marguerite Perey,Palaiseau,91120,法国 K. Pantzas 博士、G. Beaudoin、I. Sagnes 博士 巴黎萨克雷大学纳米科学与纳米技术中心 - CNRS - 巴黎南大学,10 Boulevard Thomas Gobert,91120 Palaiseau,法国 L. Li 博士、AG Davies 教授、EH Linfield 教授 利兹大学电子与电气工程学院,Woodhouse Lane,利兹 LS2 9JT,英国 关键词:量子器件、中红外、自由空间数据传输
摘要。自由空间光通信在部署方便和成本方面是光纤通信系统非常有前途的替代方案。中红外光具有几个与自由空间应用密切相关的特性:即使在恶劣条件下在大气中传播时吸收率也很低、长距离传播期间波前稳定、以及此波长范围不受任何管制和限制。最近已经展示了利用子带间设备进行高速传输的概念验证,但这一努力受到短距离光路(最长 1 米)的限制。在这项工作中,我们研究了使用单极量子光电子学构建长距离链路的可能性。使用了两种不同的探测器:非制冷量子级联探测器和氮冷却量子阱红外光电探测器。我们在背靠背配置中评估了链路的最大数据速率,然后添加了 Herriott 单元以将光路长度增加到 31 米。通过使用脉冲整形、预处理和后处理,我们在 31 米传播链路的两级(OOK)和四级(PAM-4)调制方案中达到了创纪录的 30 Gbit s −1 比特率,并且比特误码率与纠错码兼容。
GSMA 是一家全球性组织,致力于统一移动生态系统,发现、开发和提供创新,为积极的商业环境和社会变革奠定基础。我们的愿景是释放连接的全部力量,使人们、行业和社会蓬勃发展。GSMA 代表整个移动生态系统和相关行业的移动运营商和组织,通过三大支柱为其成员提供服务:良好的连接、行业服务和解决方案以及外展。这些活动包括推进政策、应对当今最大的社会挑战、支持使移动发挥作用的技术和互操作性,并在 MWC 和 M360 系列活动中提供世界上最大的平台来召集移动生态系统。我们邀请您访问 gsma.com 了解更多信息
1. C. Quintana、Q. Wang 等人,“用于长距离反射自由空间光学器件的高速电吸收调制器”,IEEE 光子技术快报,第 29 卷,第 9 期,第 707-710 页,2017 年 2. C Quintana、Q Wang 等人,“与 UAV 连接的高速反射自由空间光学器件”,IEEE 光波技术杂志,ISSN 0733-8724,E-ISSN 1558- 2213,2021 年 DOI:10.1109/JLT.2021.3091991
量子密码术 [1] 是最古老的量子技术之一,已成为应对量子计算机挑战的杰出候选技术 [2]。尤其是量子密钥分发 (QKD),其发展速度非常快,其最终目标是使远距离用户能够共享一个密钥,该密钥必须无法被窃听者获知,从而提供高度安全的加密。QKD 系统面临的关键挑战包括通信系统中的信道损耗和噪声水平。这是影响 QKD 性能及其实现的两个主要障碍,尤其是在长距离传输中 [3]。直到最近,光纤一直是研究和实验大多数 QKD 协议的主要平台。但它们的长距离安全距离有限,主要是因为光纤链路的透射率呈指数衰减。一般来说,有两种解决方案可以克服这一限制:使用量子中继器[4-10]或使用自由空间和卫星链路[11-17]。当前基于地面光纤的量子通信系统的覆盖范围仅限于几百公里[18],而我们似乎即将建立全球量子通信网络,即量子互联网[19,20]。因此,最近的研究引起了人们对星载 QKD 和空间量子通信的浓厚兴趣[17],旨在了解自由空间、高空平台站(HAPS)系统和卫星链路如何帮助突破当前的距离限制,同时保证实现量子安全。人们已经取得了重要进展,特别是在单向空间量子通信的极限和安全性方面[21-23],结果表明,秘密比特可以在湍流大气中安全地分发,无论是弱湍流还是强湍流[24]。在 QKD 科学的另一个不同分支中,独立于测量设备 (MDI) 的 QKD [25,26](相关实验另见参考文献 [27-29])是放宽典型点对点 QKD 协议中的信任假设的最有趣和研究最充分的方案之一。更准确地说,在 MDI 中,人们不需要假设将在他们之间分发密钥的合法方的检测设备是可信的。这是因为据称不受信任的第三方
本文提出了一种新方案,通过对二维信息载体进行编码,实现动态湍流介质中高保真安全的自由空间光信息传输。将数据转换成一系列二维图案作为信息载体。开发了一种新的差分方法来抑制噪声,并生成一系列随机密钥。将不同数量的吸收滤波器任意组合放置在光通道中,以生成具有高度随机性的密文。实验证明,只有使用正确的安全密钥才能检索明文。实验结果表明,所提方法可行有效。所提方法为在自由空间光通道中通过动态湍流介质实现高保真光信息传输开辟了一条途径。