概述.................... ... . . . . . . . . . . . . . 4 基本服务器标准功能和特性 . . . . . . . . . . . . . . 5 配置服务器 . . . . . . . . . . . . . . . . . . . 7 步骤 1 选择基本服务器 SKU . . . . . . . . . . . . . . . . ... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... ... . . . 44 UCS 本地语言技术支持 . . . . . . . . . . . . . . . 44 补充材料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 内存镜像 . . . . . . . . . . . . . . . . . . . . . . . 48 第三代英特尔® 至强® 可扩展处理器 (Ice Lake) 的内存支持 . . . . . . . . . . . 49 PMem 支持 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 App Direct 模式 . . . . . . . . . . . . . . . . . . . . . . . . 49 记忆模式 . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 备件 . ................. ... 57 技术规格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 59.... .... .... .... .... .... 59.... .... .... .... .... .... 59
降低风险HCP在治疗之前和整个治疗过程中应考虑涉及Camzyos的药物相互作用的潜力,包括与非处方药(例如Omeprazole或Esomeprazole)和草药补充剂共同给药的药物相互作用。camzyos禁忌使用中度至强CYP2C19抑制剂或强CYP3A4抑制剂。在启动或更改弱CYP2C19抑制剂或中等CYP3A4抑制剂时,请参阅对CYP2C19或CYP3A4诱导剂或抑制剂的伴随疗法或抑制剂,以进行CAMZYOS剂量调整和LVEF监测建议。
在许多磁场的主要阶段,太阳能电池数量很低,IMF幅度很大。在这些条件下,电离层势会饱和,并且对IMF幅度的进一步增加变得相对不敏感。的日子合并速率和电势对太阳风密度敏感。这应该导致极光电流的强度与太阳风密度之间的相关性。在这项研究中,我们提供了314个中度至强风暴的样本,并研究了DST指数与电离层中消散的能量之间的相关性。我们表明,对于较低的马赫数,此相关性降低。我们还表明,在这些风暴期间,与较低的马赫数风暴的电离圈指数与太阳风的地球效能相关。
1. 西门子医疗的这项功能目前正在开发中,尚未出售。5.5 倍加速:基于西门子医疗和英特尔对第二代英特尔至强铂金 8280 处理器(28 核)192GB、DDR4-2933 的分析,使用英特尔 OpenVino 2019 R1。HT ON,Turbo ON。CentOS Linux 版本 7.6.1810,内核 4.19.5-1。el7.elrepo.x86_64。自定义拓扑和数据集(图像分辨率 288x288)。将 FP32 与 Int8 与系统上的英特尔 DL Boost 性能进行比较。2.《美国心脏病学会杂志》,2017 年。性能结果基于截至 2018 年 2 月的测试,可能无法反映所有公开的安全更新。有关性能和基准测试结果的更多完整信息,请访问 www.intel.com/benchmarks。
5 Intel Xeon Platinum 8592+ 与 AMD EPYC 9554。以 SPDK NVMe TCP 上的性能为衡量标准。请参阅 intel.com/processorclaims 上的 (N201):第五代英特尔至强可扩展处理器。结果可能有所不同。性能因使用、配置和其他因素而异。了解更多信息,请访问 www.Intel.com/PerformanceIndex。性能结果基于截至配置中所示日期的测试,可能无法反映所有公开可用的更新。有关配置详细信息,请参阅备份。没有任何产品或组件可以绝对安全。您的成本和结果可能会有所不同。英特尔不控制或审核第三方数据。您应该咨询其他来源以评估准确性。英特尔技术可能需要启用硬件、软件或激活服务。© 英特尔公司。英特尔、英特尔徽标和其他英特尔标志是英特尔公司或其子公司的商标。其他名称和品牌可能被声明为他人的财产。1223/KO/HBD/PDF
英特尔实验室的研究人员开发了一种创新方法,利用社会反事实来减少人工智能基础模型中的偏见。他们创建了一个合成图像数据集,其中包含各种交叉社交属性,使他们能够分离和研究每个属性的影响。使用这种方法,他们可以探测六个基础模型并将偏见减少高达 20%。1 该团队利用配备第三代英特尔® 至强® 可扩展处理器和英特尔® Gaudi® 2 人工智能加速器的大型人工智能集群来训练基础多模式模型,并利用数据、文本、图像和视频的结果。这项工作是英特尔对负责任的人工智能承诺的一部分,旨在确保人工智能模型准确、基于权威来源并且没有有害偏见。此外,研究人员还开源了他们的数据集,以帮助提高整个行业的人工智能公平性。
Applied Digital 认为,最适合其用户的系统是 Supermicro SYS- 821GE-TNHR,它配备双第四代英特尔® 至强® 铂金处理器 8462Y+。这些服务器使用 NVIDIA HGX H100 GPU,每个 GPU 配备 80GB 内存。NVIDIA H100 为 HPC 提供 67 万亿次浮点运算的 FP64 Tensor Core 计算,而融合 AI 的 HPC 应用程序可以利用 H100 的 TF32 精度实现单精度矩阵乘法运算的 1 千万亿次浮点运算吞吐量。该系统在计算节点内托管八个 H100 Tensor Core GPU 和 900GB/s NVSwitch,用于 GPU 到 GPU 的通信。Applied Digital 选择 2TB 的系统 RAM 来在转移到 GPU 内存之前暂存工作负载。对于网络,Applied Digital 使用 100GbE 进行带内管理和对象存储,并使用 NDR 结构进行 GPU Direct 和融合闪存文件系统流量。利用 NVIDIA DGX 参考架构,Applied Digital 可扩展到在单个并行计算集群中工作的数千个 H100 GPU。
规格: CPU:英特尔® 至强® E-2176M 处理器(6 核、12MB 智能缓存、最高 4.40 GHz) 显示屏:15.6 英寸 (1920 × 1080),LED 背光 显示屏亮度:270 尼特(可选 800 尼特) 内存:最大。 64 GB,DDR4-2400(可选 ECC DRAM) 操作系统:Windows 10 和 Server 2016 & 2019 显卡:英特尔® UHD 显卡 P630 电池:10.8V 锂离子电池 x 2(5980mAh,热插拔) 存储:最多 4 个 SATA III SSD(可拆卸) 输入设备:电阻式触摸板(单点触摸) 音频:高清音频和立体声扬声器,嵌入式麦克风 工作温度:- 20°C 至 +60°C(-4°F 至 +140°F) 存储温度:- 40°C 至 +70°C(-40°F 至 158°F) 尺寸 (W × D × H):392 × 302 × 42 毫米(15.43 × 11.89 × 1.65 英寸),带保险杠 重量:5.3 千克(取决于配置) 符合: CE、FCC、UKCA、RCM、WEEE、REACH、RoHS2.0 IP65(不含 I/O 盖)和 MIL-STD-810H
Supermicro B13DET 支持双第四代英特尔® 至强® 可扩展处理器(插槽 E1 LGA 4677-1),具有三个 UPI(最高 16GT/s)和高达 350W 的 TDP(热设计功率)。B13DET 采用英特尔 C741 芯片组构建,支持 4TB(最高)3DS RDIMM/RDIMM DDR5 ECC 内存,在 16 个 DIMM 插槽中速度高达 4800MT/s(下面的注释 1)。这款主板具有出色的 I/O 可扩展性和灵活性,包括两个支持 SATA 6G/NVMe 的 HDD 连接器、一个支持 PCIe 5.0 的 M.2 连接器、两个支持子转接卡的夹层插槽、一个支持 25GbE 以太网 LAN 的中板,以及来自 PCH 的用于支持 SATA 6.0 的额外 SATA 连接器。它还提供最先进的数据保护,支持硬件 RoT(信任根)和 TPM(可信平台模块)(见下文注释 2)。B13DET 针对 4U/8U SuperBlade 系统进行了优化,具有高密度和高速输入/输出能力。它是高性能计算 (HPC)、云计算、财务建模、企业应用程序、具有数据密度应用程序的科学和工程计算的理想选择。请注意,此主板仅供专业技术人员安装和维修。有关处理器/内存更新,请参阅我们的网站 http://www.supermicro.com/products/。
多年来,蜥蜴热生态学研究一直依靠接触式测温法获得动物的体内温度 (T b )。然而,随着技术的进步,人们对使用新的、侵入性较小的方法(如红外 (IR) 高温计和热成像法)来推断爬行动物的 T b 产生了兴趣。尽管如此,很少有研究测试过这些新工具的可靠性。本研究测试了使用红外摄像机作为一种非侵入性工具来推断蜥蜴的 T b 的效果,使用了三种不同体型的蜥蜴科物种(Podarcis virescens、Lacerta schreiberi 和 Timon lepidus)。考虑到区域异温现象的发生,我们将六个身体部位(吻部、眼睛、头部、背部、后肢、尾根)的热成像读数与常用于在现场和实验室研究中测量 T b 的泄殖腔温度(通过温度计相关的热电偶探头测量)成对进行了比较。结果显示,所有身体部位与泄殖腔温度之间存在中等至强相关性(R 2 =0.84 – 0.99)。然而,尽管尾根读数在所有三个物种中都显示出最强的相关性,但眼睛的温度绝对值和变化模式与泄殖腔测量值最为一致。因此,我们得出结论,眼睛是红外摄像机读数与动物内部环境读数最接近的身体部位。或者,也可以使用其他身体部位,只要进行仔细的校准即可。我们为未来使用热成像技术推断蜥蜴 Tb 的研究提供了指导。