获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要:将序列变化与表型效应联系起来对于有效利用大型基因组数据集至关重要。在这里,我们提出了一种新的方法,将定向进化与蛋白质语言建模相结合,以表征水稻免疫受体的自然发展变体。使用高通量定向进化,我们设计了水稻免疫受体PIK-1,以结合和识别真菌蛋白AVR-PIKC和AVR-PIKF,它们通过当前特征的PIK-1等位基因避免检测。在此数据上对蛋白质语言模型进行了微调,以将序列变化与配体结合行为相关联。然后使用此建模来表征3,000个水稻基因组项目数据集中发现的PIK-1变体。两种变体因与AVR-PIKC的结合高度评分,并且体外分析证实了它们在野生型PIK-1受体上的提高配体结合。总体而言,这种机器学习方法确定了水稻中有希望的疾病抗性来源,并显示了探索其他感兴趣蛋白质的表型变化的潜在效用。