4.5 边界条件 ................................................................................ 40 4.6 研究案例分类 .............................................................................. 43 4.7 整体质量和能量平衡 ...................................................................... 44 4.7.1 连续性方程 ...................................................................... 44 4.7.2 热力学第一定律 ...................................................................... 48 4.8 空房间模拟 ................................................................................ 50 4.8.1 入口速度的影响 ...................................................................... 50 4.8.2 入口和壁面温度的影响 ...................................................... 57 4.8.3 通风口位置的影响 ...................................................................... 60 4.9 有人的房间模拟 ............................................................................. 68 4.9.1 站立的人 ............................................................................. 68 4.9.2 坐在椅子上的人 ...................................................................... 81 4.10 热舒适区表示 ............................................................................. 85
[1] Michael Ahn、Anthony Brohan、Noah Brown、Yevgen Chebotar、Omar Cortes、Byron David、Chelsea Finn、Keerthana Gopalakrishnan、Karol Hausman、Alex Herzog 等人。2022 年。尽我所能,不要照我说的做:为机器人可供性奠定语言基础。arXiv 预印本 arXiv:2204.01691 (2022)。[2] Chris Baker、Rebecca Saxe 和 Joshua Tenenbaum。2011 年。贝叶斯心智理论:建模联合信念-愿望归因。在认知科学学会年会论文集,第 33 卷。[3] Chris L Baker、Noah D Goodman 和 Joshua B Tenenbaum。2008 年。基于理论的社会目标推理。在认知科学学会第三十届年会论文集。 Citeseer,1447–1452。[4] Chris L Baker 和 Joshua B Tenenbaum。2014 年。使用贝叶斯心理理论对人类计划识别进行建模。计划、活动和意图识别:理论与实践 7 (2014),177–204。[5] Andreea Bobu、Marius Wiggert、Claire Tomlin 和 Anca D Dragan。2021 年。特征扩展奖励学习:重新思考人类输入。在 2021 年 ACM/IEEE 人机交互国际会议论文集上。216–224。[6] Andreea Bobu、Marius Wiggert、Claire Tomlin 和 Anca D Dragan。2022 年。通过学习特征在奖励学习中诱导结构。国际机器人研究杂志 (2022),02783649221078031。[7] Mustafa Mert Çelikok、Tomi Peltola、Pedram Daee 和 Samuel Kaski。2019 年。具有心智理论的交互式人工智能。arXiv 预印本 arXiv:1912.05284 (2019)。[8] Aakanksha Chowdhery、Sharan Narang、Jacob Devlin、Maarten Bosma、Gaurav Mishra、Adam Roberts、Paul Barham、Hyung Won Chung、Charles Sutton、Sebastian Gehrmann 等人。2022 年。Palm:使用路径扩展语言建模。arXiv 预印本 arXiv:2204.02311 (2022)。[9] Harmen De Weerd、Rineke Verbrugge 和 Bart Verheij。 2013. 了解她知道你知道的事情有多大帮助?一项基于代理的模拟研究。人工智能 199 (2013),67–92。[10] Jacob Devlin、Ming-Wei Chang、Kenton Lee 和 Kristina Toutanova。2018. Bert:用于语言理解的深度双向变压器的预训练。arXiv 预印本 arXiv:1810.04805 (2018)。[11] Prafulla Dhariwal 和 Alexander Nichol。2021. 扩散模型在图像合成方面击败了 gans。神经信息处理系统进展 34 (2021),8780–8794。[12] Prashant Doshi、Xia Qu、Adam Goodie 和 Diana Young。2010. 使用经验主义交互式 POMDP 对人类的递归推理进行建模。在第九届自主智能体和多智能体系统国际会议论文集:第 1 卷-第 1 卷。1223–1230。[13] 段佳飞、余志强、谭辉、朱宏远和陈志东。2022 年。具身人工智能调查:从模拟器到研究任务。IEEE 计算智能新兴主题汇刊 (2022 年)。[14] 段佳飞、余志强、谭辉、易立和陈志东。2022 年。BOSS:对象上下文场景中人类信念预测的基准。arXiv 预印本 arXiv:2206.10665 (2022 年)。[15] David Engel、Anita Woolley、Lisa Jing、Christopher Chabris 和 Thomas Malone。2014 年。从眼睛读懂心思还是从字里行间读懂心思?心智理论在线上和面对面时同样能预测集体智慧。PloS one 9 (12 2014),e115212。https://doi.org/10.1371/journal.pone.0115212 [16] Dylan Hadfield-Menell、Stuart J Russell、Pieter Abbeel 和 Anca Dragan。2016 年。合作逆强化学习。神经信息处理系统的进展 29 (2016)。[17] Yanlin Han 和 Piotr Gmytrasiewicz。2018 年。使用交互式 POMDP 在多智能体环境中学习他人的意向模型。神经信息处理系统的进展 31 (2018)。 [18] 何开明、张翔宇、任少卿和孙健。2016 年。深度残差学习在图像识别中的应用。IEEE 计算机视觉与模式识别会议论文集。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。2020 年。去噪扩散概率模型。神经信息处理系统进展 33(2020 年),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020 年。人工智能与对未来的担忧:挪威案例研究。在《分布式、环境和普适交互》中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。 [21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。2016 年。协调合作或竞争:社交互动中的抽象目标和共同意图。《认知科学》。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015 年。深度学习。《自然》521,7553(2015 年),436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的更大信任?个体差异在用户对内容审核反应中的作用。新媒体与社会 0, 0 (0), 14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。[25] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018 年。机器心智理论。国际机器学习会议。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本到图像生成。国际机器学习会议。PMLR,8821–8831。org/10.1371/journal.pone.0115212 [16] Dylan Hadfield-Menell、Stuart J Russell、Pieter Abbeel 和 Anca Dragan。2016 年。合作式逆强化学习。神经信息处理系统进展 29(2016 年)。[17] Yanlin Han 和 Piotr Gmytrasiewicz。2018 年。使用交互式 POMDP 在多智能体环境中学习他人的意向模型。神经信息处理系统进展 31(2018 年)。[18] Kaiming He、Xiangyu Zhang、Shaoqing Ren 和 Jian Sun。2016 年。用于图像识别的深度残差学习。IEEE 计算机视觉与模式识别会议论文集。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。 2020. 去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020. 人工智能与对未来的担忧:挪威案例研究。在分布式、环境和普适交互中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。2016. 协调合作或竞争:社交互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。 nature 521, 7553 (2015), 436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的信任度更高?个体差异在用户对内容审核的反应中的作用。新媒体与社会 0, 0 (0), 14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978),515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。在国际机器学习会议上。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021. 零样本文本到图像生成。在国际机器学习会议上。PMLR,8821–8831。org/10.1371/journal.pone.0115212 [16] Dylan Hadfield-Menell、Stuart J Russell、Pieter Abbeel 和 Anca Dragan。2016 年。合作式逆强化学习。神经信息处理系统进展 29(2016 年)。[17] Yanlin Han 和 Piotr Gmytrasiewicz。2018 年。使用交互式 POMDP 在多智能体环境中学习他人的意向模型。神经信息处理系统进展 31(2018 年)。[18] Kaiming He、Xiangyu Zhang、Shaoqing Ren 和 Jian Sun。2016 年。用于图像识别的深度残差学习。IEEE 计算机视觉与模式识别会议论文集。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。 2020. 去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020. 人工智能与对未来的担忧:挪威案例研究。在分布式、环境和普适交互中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。2016. 协调合作或竞争:社交互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。 nature 521, 7553 (2015), 436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的信任度更高?个体差异在用户对内容审核的反应中的作用。新媒体与社会 0, 0 (0), 14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978),515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。在国际机器学习会议上。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021. 零样本文本到图像生成。在国际机器学习会议上。PMLR,8821–8831。在 IEEE 计算机视觉与模式识别会议论文集上。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。2020 年。去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020 年。人工智能与对未来的担忧:挪威案例研究。在《分布式、环境和普适交互》中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。 2016. 协调合作或竞争:社会互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。自然 521,7553(2015),436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的更大信任?个体差异在用户对内容审核反应中的作用。新媒体与社会 0, 0 (0),14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。国际机器学习会议。PMLR,4218–4227。 [27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本转图像生成。国际机器学习会议。PMLR,8821–8831。在 IEEE 计算机视觉与模式识别会议论文集上。770–778。[19] Jonathan Ho、Ajay Jain 和 Pieter Abbeel。2020 年。去噪扩散概率模型。神经信息处理系统进展 33 (2020),6840–6851。[20] Kyriaki Kalimeri 和 Ingvar Tjostheim。2020 年。人工智能与对未来的担忧:挪威案例研究。在《分布式、环境和普适交互》中,Norbert Streitz 和 Shin'ichi Konomi(编辑)。Springer International Publishing,Cham,273–284。[21] Max Kleiman-Weiner、Mark K Ho、Joseph L Austerweil、Michael L Littman 和 Joshua B Tenenbaum。 2016. 协调合作或竞争:社会互动中的抽象目标和共同意图。在 CogSci 中。[22] Yann LeCun、Yoshua Bengio 和 Geoffrey Hinton。2015. 深度学习。自然 521,7553(2015),436–444。[23] Maria D. Molina 和 S. Shyam Sundar。0. 对人类的不信任是否预示着对人工智能的更大信任?个体差异在用户对内容审核反应中的作用。新媒体与社会 0, 0 (0),14614448221103534。https://doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。 1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。[25] David Premack 和 Guy Woodruff。1978. 黑猩猩有心智理论吗?行为与脑科学 1, 4 (1978), 515–526。https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018. 机器心智理论。国际机器学习会议。PMLR,4218–4227。 [27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本转图像生成。国际机器学习会议。PMLR,8821–8831。//doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 [25] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018 年。机器心智理论。国际机器学习会议。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本到图像生成。国际机器学习会议。PMLR,8821–8831。//doi.org/10.1177/14614448221103534 arXiv:https://doi.org/10.1177/14614448221103534 [24] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 [25] David Premack 和 Guy Woodruff。1978 年。黑猩猩有心理理论吗?行为与脑科学 1, 4 (1978),515–526。 https://doi.org/10.1017/S0140525X00076512 [26] Neil Rabinowitz、Frank Perbet、Francis Song、Chiyuan Zhang、SM Ali Eslami 和 Matthew Botvinick。2018 年。机器心智理论。国际机器学习会议。PMLR,4218–4227。[27] Aditya Ramesh、Mikhail Pavlov、Gabriel Goh、Scott Gray、Chelsea Voss、Alec Radford、Mark Chen 和 Ilya Sutskever。2021 年。零样本文本到图像生成。国际机器学习会议。PMLR,8821–8831。
– 按照产品说明,在接种疫苗前 30 至 60 分钟,将约 25 美分硬币大小的药膏涂抹在孩子的上臂(最好是非惯用手,即如果孩子是右撇子,则涂抹在左臂)。– 在加拿大,药店无需处方即可购买麻醉霜,例如 EMLA ®(利多卡因-丙胺卡因)、Maxilene ®(利多卡因)和 Ametop ®(丁卡因)。
批准论文:使用计算流体动力学对军用飞机客舱的热舒适性分析,由 İREM KÖSE 提交,部分满足中东技术大学机械工程理学硕士学位的要求,由自然与应用科学研究生院院长 Halil KALIPÇILAR 教授提交
摘要:近年来,航空业在燃油消耗、维护和性能方面取得了重大技术进步。在燃油效率和排放最小化方面,最有希望的发展是未来几代涡轮螺旋桨飞机(即由螺旋桨产生推力的飞机)。涡轮螺旋桨飞机的一个重要缺点是它们的客舱往往更嘈杂,而且由于音调的存在,振动会导致不适程度增加。人的舒适感是飞机制造商在机身和飞机内饰设计中的关键因素。噪音和振动是飞机客舱不适的主要来源;因此,飞机制造商正在寻求根据噪音和振动测量来估计乘客的不适感,以优化飞机设计。本研究的目的是建立一个飞机舒适度模型,使设计师和工程师能够优化乘客的旅行体验。本文介绍了一项实验室研究,确定了噪音和振动对涡轮螺旋桨飞机客舱的相对重要性。结果表明,随着噪音水平和振动幅度的增加,人体整体不适感也随之增加。提出了一种线性舒适度模型,可以通过测量涡轮螺旋桨飞机的噪音和振动来预测整体不适感,从而优化飞机客舱。
个性化医疗、[9] 神经工程、[10] 人机界面 [11,12] 和智能假肢。[13] 通过电气方式监测生物信号可以将电子皮肤 (E-skin) 传感器与大数据、[14] 人工智能 [15] 和物联网 (IoT) 技术相结合。[16] 随着皮肤上设备的应用不断扩大,已经报道了在非传统基板(如 3D 自由曲面、皮肤和地形基板)上实现可穿戴电子产品的新方法。[8,17,18] 此外,还展示了电子皮肤的其他吸引人的功能。例如,实现光学功能以可视化与健康状况相关的信息是与人类直观交互的一个有吸引力的方向。[19] 具有自供电功能的可穿戴传感器也可以扩展其适用性。 [20,21] 无线电子皮肤系统可将测量数据传输到移动设备,并在监测健康状况的同时支持日常活动,在用户便利性方面也很有吸引力。 [22] 此外,仅传输生物信号中关键的必要信息这一可能功能是电子皮肤传感器的一个特别有吸引力的方向,因为它可以减少无线数据传输的功耗和后处理的数据数量。
摘要本文研究了Spotify的Web API的数据,这些数据是在1958年8月至2021年5月第一张图表发行的Billboard Hot 100图表上的所有歌曲,以确定音乐苦难与经济痛苦之间的关系。十二个因变量 - 持续时间,舞蹈性,能量,钥匙,声音,声音,声音,响度,响度,仪器,术语,livesice,Valence和Tempo-用于衡量Arthur Okun的美国经济痛苦指数对每个特征的影响。使用12种单独的线性回归 - 一个用于每个因变量的一个 - 我发现,在经济困难增加的时候,消费者可能会选择聆听更长,更安静,更慢,更快乐的歌曲,这些歌曲具有较小的方式,较高的舞蹈性,舞步,较低的语音性,livesence,livesice和声音的水平。与以前的研究一致,这些结果表明人们在不确定的经济时期听音乐时如何寻求舒适感和摆脱压力的现实。此外,我提出了一个音乐苦难指数,该指数通过将统计上显着的变量除以其回归系数来为回归结果带来价值。由此产生的音乐苦难指数与经济痛苦的正相关为0.606,因此表明,流行音乐的消费者偏好与美国经济状况之间存在牢固的关系。最后,考虑到90%的美国人口定期听音乐,人们通过听音乐来调节自己的情绪,本文认为,可以利用音乐痛苦来估计消费者对美国经济的实时脉搏。
隐私法声明授权:10 U.S.C.§136:“国防部人事和战备副部长”;10 U.S.C.第 48 章,“军事惩教设施”;国防部指令 1325.04,“军事囚犯监禁和军事惩教计划与设施管理”;国防部指令 1325.07,“军事惩教设施管理及赦免和假释权力”;以及 E.O.9397 (SSN),经修订。主要目的:记录囚犯的请求、发放和授权,如果囚犯处于支付状态,则从其军事工资账户中扣除健康和舒适用品,如果囚犯处于非支付状态,则免费发放。常规用途:根据 5 U.S.C. 的规定,记录披露通常是允许的。经修订的 1974 年隐私法第 522a(b) 条。信息可能会披露给监禁/惩教机构,用于惩教计划的管理。有关更多信息,请参阅记录系统通知 A0190-47 DAPM-ACC,“陆军惩教系统和假释委员会记录”,NM01650-1,“个人监禁记录”,以及 F031 AF SF A,“惩教和康复记录”,发布于 https://dpcld.defense.gov/Privacy/SORNs/ 。披露:自愿。但是,如果未能提供所有要求的信息,可能会导致无法处理表单。
与仅使用问卷相比,需要对热舒适条件进行定量测量才能获得更有效的测量结果。本研究旨在使用脑电图 (EEG) 信号进行初步研究,以预测室内环境中的个人热舒适度。个人的满意度或不满意度描述了个人对热条件暴露的热舒适度。本研究应用的分类方法是 k-最近邻分类。所得结果表明,大脑的枕叶(以 O2 通道为代表)和额叶(以 FC5 通道为代表)被怀疑可以量化个人热舒适度。量化是在 O2 通道中的 delta(0-4 Hz)和 theta(4-8 Hz)频带以及 FC5 通道中的 beta(13-30 Hz)频带中生成的。k-最近邻算法的准确率为 85%,适合预测个人热舒适度。
