注视,即盯着单一仪器,通常是有原因的,但效果不佳。例如,飞行员可能会盯着低于指定高度 200 英尺的高度计读数,并想知道指针是如何到达那里的。在注视仪器时,可能会无意识地对控制装置施加越来越大的张力,这会导致未被注意到的航向变化,从而导致更多错误。另一种常见的注视可能是在开始改变姿态时。例如,为 90° 转弯建立了一个浅坡度,飞行员没有保持对其他相关仪器的交叉检查,而是在整个转弯过程中盯着航向指示器。由于飞机正在转弯,因此在转弯后约 25 秒内无需重新检查航向指示器。这里的问题可能并不完全是由于交叉检查错误造成的。这可能与仪器解释困难有关。读取航向指示器的不确定性(解释)或由于转弯时滚动不一致而导致的不确定性(控制)可能会导致注视。
ANDERSON, E.W.导航原理。纽约,美国爱思唯尔出版公司,1966 年,653 页。本书全面回顾了导航,并试图通过描述整个学科,以便从更广泛的背景来看待每个问题,并提出一种适合导航研究的通用语言,促进导航员、科学家和工程师之间的思想交流。陆地、海洋、空中和太空导航被视为平行发展,可以相互学习。讨论了控制、航向和速度等仪器方面,并考虑了航向、航位推算和路线。分析了包括定位、一般和视觉辅助以及天文导航在内的基本辅助。研究了无线电和无线电方位、无线电测距以及雷达和声纳。
使用多个站按时间共享同一 VOR 通道来增加 VOR 覆盖范围的效果(地面复杂性增加,但提供空中复杂性和双 LOP)20 Omega LOP 和 VOR 组合的示例。 L9P 22 Omega LOP'S(斜平行)与 VKF 全向 LOP'S(单点径向)的组合 23 使用 VOR 链路与飞机传输 Omega 差分信号,提供以 VOR 站坐标为参考的组合径向平行斜网格 24 航向距离测量(机载航向输出) 28 航向距离测量(地面源输出) 29 航向 DME 与空中和地面输出 30 多个 VOR 站分时共享一个公共信道 32 一种地理分离和两个 VOR 信道分时共享的方法,提供来自多个地面站点的角度和距离功能 34 使用伺服存储器和/或 DC 存储器存储间歇性 VOR 方位 35 通用航空仪表进近仅使用航向道 38 可能整合 Omega 的按时间排序的位置报告地面显示、处理和向相邻位置的飞机发送近距信号的坐标 41 低成本通用航空机载单元的 VHP 专用补充执行的各种功能示例 43 系统集成示例,可降低通用航空电子复杂性和成本,同时提高功能价值 44 Bell 4 X 4 双音信号系统 47 使用两位双音系统的简化 VOR 编码 51 T
因此,您已决定通过安装新的主飞行显示器 (PFD) 将飞机上的旧仪表板升级为最新的玻璃面板技术。如果您和许多飞行员或机主一样,您不会花太多时间考虑将使用什么作为备用或待命飞行仪表。但是,所有经过认证的飞机在改装电子 PFD 时,都需要备用仪表来指示姿态、空速、高度和航向。[一个例外:型号合格证限制为 VFR 使用的飞机通常不需要备用姿态指示器。] 目前配备电子飞行显示器的许多飞机都使用普通的旋转质量姿态陀螺仪以及标准高度计和空速指示器作为备用仪表。原始湿罗盘通常用作必需的备用航向指示器。近年来,电子飞行仪表背后的技术取得了长足的进步。它们现在
- 基于 4 个(反作用轮)的 3 轴稳定 - 指向精度:< 0.2º (2σ) - 指向知识:1 弧分 (2σ) - 姿态感应:航向太阳传感器、精细太阳传感器、磁力计、星传感器、陀螺仪
2022 年 10 月 22 日 — M/V SANTA CRUZ II 发出灯光。结果,他没有意识到两艘船正处于相遇状态,并改变了 CUYAHOGA 的航向……
知识中心和资源,使我们能够产生Alpha,建立更具弹性的投资组合,并将我们的投资组合定位以导航向低碳经济的过渡 - 所有这些都是为了追求我们对会员的信托义务和服务。
在存在不必要的干扰(例如风)和飞行器模型中的不确定性(例如空气动力学特性中的错误)的情况下实现制导命令。导航、制导和控制可以松散或非常紧密地耦合。松散耦合的系统可能类似于大型水面舰艇。舰船的导航系统确定当前位置、速度和航向。可以执行相当简单的制导计算来确定到达下一个目标位置的最有效的“大圆”路线。在这种情况下,控制系统是舰船的舵和轴,并发出命令以达到制导计算指示的所需速度和航向。然而,高速机动再入飞行器需要紧密耦合的系统。飞行器可以利用 INS 或 GPS 的测量值进行导航;同时,它可以根据更新的导航计算修改制导命令,并同时使用这些计算来评估控制律对飞行器的操纵效果,并在导航测量中出现错误时修改命令。