本文为基于可靠的状态空间可达性分析提供了一种安全自主导航的新方法。后者改善了基于顺序航路点(NSBSWR)框架[1]的已经提出的灵活导航策略[1],同时考虑了建模和/或感知方面的明显不同的不确定性。的确,NSBSWR是一个新兴的概念,可以利用其灵活性和通用性,以避免频繁的复杂轨迹的计划/重新计划。本文的主要贡献是引入可及性分析方案,作为可靠的风险评估和管理政策,以确保连续分配的航点之间安全自主导航。为此,使用间隔分析来传播影响车辆动力学到导航系统指出的不确定性。通过求解具有不确定变量和参数的普通微分方程,通过间隔泰勒串联扩展方法揭示了所有车辆潜在的可触及状态空间。根据可达集的获得的界限,对导航安全做出了决定。一旦捕获了碰撞风险,风险管理层就会采取行动以更新控制参数,以掌握关键情况并确保适当地达到Waypint,同时避免任何风险状态。几个模拟结果证明了在不确定性下总体导航的安全性,效率和鲁棒性。
管制部门会导致高延误、额外燃料消耗和二氧化碳排放,还可能因航空网络不稳定而导致安全问题。本文介绍了一种新的控制策略方法,以控制欧洲最繁忙航段(兰斯、巴黎和马赛航段)的当前航班需求。区域管制中心的流量管理岗位向航空公司运营中心建议,为法国领空内容量最大的航班提供无延误航线。这种创新方法不是将航班需求分散到时间,而是旨在依靠本地专业知识和加强协作,在空间上分散需求。2015 年 7 月至 9 月进行的试验证明对航空公司运营有益,与 2014 年夏季相比,延误时间缩短了 12,000 多分钟,而交通量从 UTC 时间的 9 点到 13 点增加了 6% 以上。继机场协同决策之后,协同高级规划流程为航路协同决策概念铺平了道路。
空中交通管制员或“空中交通管制员”的活动包括确保空中交通流量的安全,他们的工作活动很快将面临前所未有的演变。为了补偿主要与空中交通水平显着增加相关的环境变化,我们的目标是构建新的控制环境,从而引入新技术并实现控制任务的部分自动化。这些观点旨在减少对空中交通管制员的要求,以提高空中交通管理的容量门槛,但提出了一些问题。特别是,我们如何确保这些进展得到验证以实现既定目标?
4.5.1.1 下表列出了位于所有军用机场和直升机场的识别信标。有关机场识别信标的更多具体信息,请参阅 AD 2.15 / AD 3.15 - 其他照明、辅助电源。
部门................................................................................................................................................ 1
航路交通管制中心 航路交通管制中心 (ARTCC) 包括航路空中交通管制系统空中/地面无线电通信,可为在中心控制空域内按照仪表飞行规则 (IFR) 运行的飞机提供安全、迅速的移动。ARTCC 是签发 IFR 许可和在全国范围内监控每个 IFR 飞行的中央机构。这主要适用于飞行途中阶段,包括天气信息和其他飞行服务。美国本土有 20 个 ARTCC,每个中心包含 20 到 80 个扇区,其大小、形状和高度由交通流量、航路结构和工作量决定。适当的雷达和通信站点通过微波链路和电话线连接到中心。[图 3-1]