出发航班 22.3 IFR 离场建议说明 22.3.1 IFR 离场建议说明 22.3.1 RWY 36:爬升 MAG 004° 至 1023(500),然后直接航线至航路安全高度。RWY 36:爬升 RM 004° 至 1023(500),然后直接航线爬升至航路安全高度。RWY 18:以 4.6% 坡度、MAG 184° 爬升至 1023 (500),然后直接航线上升至航路安全高度。RWY 18:以 4.6% RM 184° 爬升至 1023 (500),然后直接爬升至航路安全高度。确定障碍物:距离 ARP 0.63 海里/164° 的危险信标 ALT 628 英尺确定了 4.6% 的理论爬升坡度。确定障碍物:0.63 海里处 ARP QDR 164° 中的 ALT 628 英尺危险信标确定理论爬升梯度为 4.6%。飞往 LFPO-LFPN-LFPV 的飞行计划 航线计划 BRY-MLN FL 060 MAX。22.3.2 飞往 LFPO-LFPN-LFPV 的飞行计划计划航线 BRY-MLN FL 060 MAX。22.3.2 →
离场程序 22.1 IFR 离场 RWY 07 的建议说明:以 3.8% MAG 065° 爬升至 813 (500),然后直接航线上升至航路安全高度。 RWY 07:以 3.8% RM 065° 爬升至 813 (500),然后直接爬升至航路安全高度。跑道 25:以 6.7% MAG 245° 爬升至 1313 (1000),然后直接飞至航路安全高度。理论坡度,最不利障碍:距离跑道中心线右侧 DER 150 米处 355 英尺处的路灯。
摘要:在异常或紧急情况下,意外事件引起的航路变更往往会对操作人员在飞行任务中的认知和行为产生不利影响。在这种情况下,尤其有必要研究通常基于常规环境设计的交互显示效用。本研究旨在探讨航路变更和显示设计对模拟飞行任务中操作人员态势感知、任务绩效和心理负荷的影响。24 名被试参加了一项实验,被试被要求在航路按计划和航路变更两种条件下执行三种显示设计的模拟飞行任务。采用主观测量、行为测量和眼动测量来评估被试的态势感知、任务绩效和心理负荷。结果表明,由于注意力资源的需求和供应之间的差距,意外航路变更增加了心理负荷,同时也降低了态势感知和任务绩效。在应对异常情况下的意外事件时,应重点降低操作人员注意力资源的需求。此外,合理的信息布局,如关键决策信息的中心布局设计,对提高异常情境下的态势感知和任务绩效比信息显著性更重要。然而,具有高显著性的指标可能对异常情境下的态势感知和任务绩效产生不利影响。
交通和容量 ................................................................................................................................ 22 第 2 章 - 2.1 德国交通的发展 ................................................................................................................ 22 2.1.1 2010-2019 年交通和航路 ATFM 延误 ................................................................................ 23 2.1.2 2014 年绩效 ...................................................................................................................... 25 2.1.3 2015-2019 年规划期 ............................................................................................................. 25 2.2 不来梅 ACC ............................................................................................................................. 27 2.2.1 2010-2019 年交通和航路 ATFM 延误 ............................................................................................. 27 2.2.2 2014 年夏季绩效 ............................................................................................................. 27 2.2.3 2015-2019 年规划期 ............................................................................................................. 28 2.3 兰根 ACC ........................................................................................................................... 31 2.3.1 2010-2019 年交通和航路空中交通流量管理延误 .............................................................. 31 2.3.2 2014 年绩效 ..............................................................................................
出发航班 22.3 IFR 出发建议说明 22.3.1 IFR 出发建议说明 22.3.1 RWY 36:爬升 MAG 004° 至 1023(500),然后直接航线至航路安全高度。 RWY 36:爬升 RM 004° 至 1023(500),然后直接航线爬升至航路安全高度。 RWY 18:以 4.6% 坡度、MAG 184° 爬升至 1023 (500),然后直接航线上升至航路安全高度。 RWY 18:以 4.6% RM 184° 爬升至 1023(500),然后直接爬升至航路安全高度。确定障碍物:距离 ARP 0.63 海里/164° 的危险信标 ALT 628 英尺确定了 4.6% 的理论爬升坡度。确定障碍物:0.63 海里处 ARP QDR 164° 中的 ALT 628 英尺危险信标确定理论爬升梯度为 4.6%。飞往 LFPO-LFPN-LFPV 的航班计划 航线计划 BRY-MLN FL 060 MAX。 22.3.2 飞往 LFPO-LFPN-LFPV 的飞行计划计划航线 BRY-MLN FL 060 MAX。 22.3.2 →
作为 FAA NextGen 在国家空域系统 (NAS) 中引入先进通信服务的一部分,管制员飞行员数据链路通信 (CPDLC) 已在配备塔台数据链路服务 (TDLS) 的当地设施中引入,以通过先进的自动化提供离境许可和修订的离境许可。未来航路 ATC CPDLC 服务提供通信传输、横向和垂直导航相关的 ATC 许可服务,已开始部署到关键航路站点。 NAS 数据通信指南向机组人员介绍了 NAS 中的 CPDLC 概念,并概述了航空公司运营中心 (AOC)、放行和航路管制员以及机组人员的角色。该文件描述了登录/注销、加载飞行计划、接收放行、响应 CPDLC 放行以及机组人员发起的 ATC 请求的一般程序。提供了不同类型的 CPDLC 放行的示例,并提供了审查、处理和响应放行的指导。
进港航班 20.1 到达航班 22.2 夜间 IFR/VFR LDG RWY 强制使用 PAPI 06. 出港航班 22.3 出发航班 22.3 IFR 离港的建议说明。对于 IFR 出发的建议说明。 RWY 06:爬升 MAG 059° 至 1400(948),然后直接航线上升至航路安全高度。 RWY 06:爬升 RM 059° 至 1400(948),然后直接爬升至航路安全高度。 RWY 24:以 4% 坡度、MAG 239° 爬升至 1400(948)(1),然后直接飞行至航路安全高度。 RWY 24:以 4% RM 239° 爬升至 1400(948)(1),然后直接爬升至航路安全高度。 (1)PDG:最具惩罚性的障碍物:位于 DER 600 米处、RWY 轴线左侧 300 米处的树木,高度为 529 英尺。 (1)PDG:最具惩罚性的障碍物:距离 DER 600 米、轴线左侧 300 米处有 529 英尺高的树木。 IFR 起飞:若 SAINT BRIEUC AFIS 缺失,飞行员应通过电话 02.99.31.31.55 向 RENNES APP 申请 IFR 起飞许可 IFR 起飞:若 SAINT BRIEUC AFIS 缺失,飞行员应通过电话 02.99.31.31.55 向 RENNES APP 申请 IFR 起飞许可
出站飞机离港航班 IFR 离港 RWY 02 建议指示:爬升 MAG 015° (1) 至 3200 (2094),然后直接航线上升至航路安全高度。 RWY 02:爬升 RM 015°(1)至 3200(2094),然后直接航线爬升至航路安全高度。 (1)本指示不考虑位于 DER 103 米处和 RWY 中心线左侧 109 米处的 1101 英尺树群。 (1)该指令忽略了距离 DER 103 米、轴线左侧 109 米处的 1101 英尺树林。 RWY 20:以 5.6%(2)MAG 195° 爬升至 4100(2994),然后直接航线上升至航路安全高度。 RWY 20:以 5.6%(2)RM 195° 爬升至 4100(2994),然后直接爬升至航路安全高度。 (2)爬升的理论基础,最具惩罚性的障碍物:距 DER 10260 米处 2730 英尺的山峰,位于 RWY 中心线右侧 2730 米处。 (2)理论上升坡度,最具惩罚性的障碍物:距 DER 10260 米处的海拔高度为 2730 英尺,位于轴线右侧 2730 米处。
出发航班 IFR 出发建议说明 IFR 出发建议说明 RWY 14:以 4.1%(1)MAG 143° 爬升至 800(470),然后直接航线保持 3.3% 的最小爬升梯度直至航路安全高度。 RWY 14:以 4.1%(1)RM 143° 爬升至 800(470),然后以 3.3% 的速度直接爬升至航路安全高度。 (1)理论攀爬坡度由轴线左右两侧 377 英尺(47 英尺)的矮林和 375 英尺(45 英尺)的植被决定。 (1) 理论上升坡度由轴线左右两侧 377 英尺(47 英尺)的灌木丛和 375 英尺(45 英尺)的植被决定。 RWY 32:以 4.7%(2)MAG 323° 爬升至 900(570),然后直接航线保持 3.3% 的最小爬升梯度直至航路安全高度。 RWY 32:以 4.7%(2)RM 323° 爬升至 900(570),然后以 3.3% 的速度直接爬升至航路安全高度。 (2)理论爬升坡度由西北方向 3100 米处 698 英尺(368 英尺)的塔架决定。 (2)理论上升坡度由西北方向 3100 米处的 698 英尺(368 英尺)高的塔架确定。
S-TEC 的 GPSS。GPS 转向功能是所有 S-TEC 自动驾驶仪的可选功能,可显著改善航路和进近 GPS 导航跟踪。正常导航跟踪使用航向数据和航向偏差(显示为 OBS 或 HSI 指针偏转)。S-TEC 的 GPSS 可执行许多较新的 GPS 导航仪输出的滚动转向命令。理论上,GPS 计算机始终知道自己的位置,并根据飞行员编写的飞行计划知道要去哪里。GPS 计算机将这些信息处理为左右转向命令。这些命令将发送给自动驾驶仪,自动驾驶仪根据命令驾驶飞机,非常准确地导航 GPS 航路。目前,一些 GPS 导航仪具有滚动转向功能,可用于航路飞行和有限进近过渡程序。随着 GPS 数据库库存不断增长,包括完整的进近程序,S-TEC 的 GPSS 将准备好执行这些程序。