b'by gr \ xc3 \ xb6bner基依据[FJ03]。相比之下,解决80个布尔二次方程的随机,非结构化的系统仍然是一个艰巨的挑战,在实践中尚未完成。饼干属于多元加密系统的第二类。为了减少签名的大小,其设计师使用特殊形状的多项式。每个(二次)公共多项式可以写入f + g \ xc3 \ x97 H,其中f,g和h是n个变量中的仿射形式。关键是在某些输入向量X上评估这一点需要在有限字段中通过非恒定体进行单个乘法。这是一个非常强大的结构:虽然(n + 1)(n + 2) / 2系数描述了通用的二次多项式,但A \ xe2 \ x80 \ x9c biscuit -style \ xe2 \ x80 \ x80 \ x80 \ x9d polynomial仅由3 n n n n + 1 coefficiations进行了充分描述。设计师观察到,与一般MQ问题相比,这种结构可以实现更好的攻击算法。在提交文档[BKPV23A]中,他们提出了一种简单的组合算法,该算法在n变量的n变量中求解饼干 - 式多项式系统,并在有限的字段上使用\ xcb \ x9c o q 3 n/ 4操作,并使用Q元素进行Q元素。这比详尽的搜索\ xe2 \ x80 \ x94要好得多。它需要\ xcb \ x9c o(q n)操作。在一般情况下,没有这种改进的组合算法,这是一个很大的暗示,即额外的结构使问题更容易。
根据 CDP 的 2022 年气候转型计划报告,在 18,600 家公司中,只有 4,100 家公司宣称他们已经制定了符合巴黎气候转型计划,而其中只有 81 家公司(占所有公司的 0.4%)提供足够的证据支持这一说法。另外 6,520 家组织报告称,他们计划在不久的将来制定转型计划。对于可靠的转型计划,超过 1/3 的公司满足“风险与机遇”类别的披露标准,但“财务规划”、“目标”和“战略”表现最差(分别有 3%、4% 和 7% 的公司达到标准)。披露程度最高的行业是发电和基础设施(占所有组织的 2.2% 和 1.7%),而披露程度最低的行业是服装、化石燃料和酒店业(占所有组织的
我说:“不,我不知道我发生了什么事。”当他到达首都时,他的逃亡减少了,他开始失去了与我们的友好关系,他也去了塔达法特城回归伊斯兰教,然后他去了24世纪的马勒姆村。而虽然他们和Nod在同一个地方,但因为职位是同时代的,所以他们是在伊苏特之地。我们的心已经远去,我继承了我的家,我继承了我与笔的关系。沙拉布姆·亚格
鱼雷和水雷 1941 年 12 月 22 日,战时内阁会议决定在澳大利亚制造鱼雷,这项决定使该国的精密工程领域承担了一项极其艰巨的任务;由于鱼雷在现代军备中占据重要地位,这项任务具有极其重要的潜在意义。海权是英国在 19 世纪称霸世界强国的基石,因此鱼雷的研发本质上是英国的成就也就不足为奇了,尽管它最初并不是英国的发明。英国在鱼雷应用方面早期的领先地位很大程度上归功于指挥官(后来的海军上将)费舍尔的热情,但其他大国不久也进入了该领域。这种武器的巨大潜力首次显现于 1914 年至 1918 年的战争中,当时德国利用 U 型潜艇和鱼雷对商船造成了巨大损失,几乎让英国屈服。第一次世界大战后的二十年间,随着飞机投掷鱼雷方法的发展,鱼雷的破坏力进一步增强,不需要太多洞察力就能预测鱼雷在未来战争中的作用。2 英国的鱼雷制造主要由一家私人公司怀特黑德鱼雷公司(Whitehead Torpedo Company)和位于苏格兰格里诺克的海军部负责。 1941 年 7 月,海军部担心英国的鱼雷生产可能会因轰炸或入侵而受阻,甚至完全停止,因此开始研究为这种紧急情况提供替代中心的方法。英国的制造业已尽可能分散,但尚未在英国以外建立中心。1941 年 7 月 15 日,海军部在给澳大利亚海军委员会的一封信中表示:“如果鱼雷制造商能够在英国制造鱼雷,那将是一个相当大的优势。”