摘要表明,与Lebiedow-Icz等人的主张相反。(Phys Rev D 105(1):014022,2022)在适当的物理变量中配制的较低定理(Phys Rev 110(4):974–977,1958)用于软光子发射不需要任何模拟。我们还拒绝Lebiedowicz等人的批评。(2022)论文(Phys。Burnett和Kroll。修订版Lett。 20:86–88,1968; Nucl Phys B 307:705–720,1988年的Lipatov。 同时,我们确定了Burnett and Kroll(1968)中的一些不准确性,以呈现软孔定理的旋转一半属性。 我们还指出了经典教科书中低定理的缺点(Berestetskii等人 量子电动力学。 Pergamon Press,牛津,1982年; Lifshitz和Pitaevsky在相对论量子理论中,第2部分,Fizmatlit,2002)。Lett。20:86–88,1968; Nucl Phys B 307:705–720,1988年的Lipatov。同时,我们确定了Burnett and Kroll(1968)中的一些不准确性,以呈现软孔定理的旋转一半属性。我们还指出了经典教科书中低定理的缺点(Berestetskii等人量子电动力学。Pergamon Press,牛津,1982年; Lifshitz和Pitaevsky在相对论量子理论中,第2部分,Fizmatlit,2002)。
更高的能量“容易” - 3个TEV研究(CLIC),但许多TEV具有挑战性:•功率与亮度成比例•考虑到50km•较高能量意味着较小的光束和越来越重要的横梁效应
1型糖尿病是由于胰腺β细胞自身免疫性破坏引起的疾病,导致胰岛素分泌减少和血糖水平升高。如果能充分补充胰岛素,血糖水平就能得到很好的控制,不需要限制饮食,也能过上和健康人相似的生活。以前,人们认为碳水化合物计数(根据碳水化合物的量和血糖水平来确定胰岛素的摄入量)可以很好地控制血糖。然而,随着可以全天测量血糖水平的机器越来越普及,人们清楚地认识到,仅靠碳水化合物计数是不够的。最近,越来越多的人出于各种目的使用智能手机来管理饮食。通过使用智能手机的相机拍照并使用人工智能分析图像,您可以轻松计算出膳食的卡路里和碳水化合物含量。此外,还可以使用最近流行的可穿戴设备(手表型信息设备)来测量日常活动量。通过结合碳水化合物计数、活动水平和血糖趋势等数据,人们相信可以比以前更有效地确定最佳的额外胰岛素量。
(开发编号2001)2020年1月22日三菱电机株式会社实现高能源效率的污水处理:开发基于AI的污水处理厂曝气量控制技术三菱电机株式会社开发了一种曝气量控制技术,该技术利用其AI技术Maisart®*1,通过提前数小时准确预测进入进行污水处理所需氧化过程的生物反应器的水质(氨浓度),来抑制生物反应器的过度曝气(空气供应)。通过控制每个部分,可以在保持处理水质的同时,与传统方法相比减少约 10%*2 的曝气量。这将有助于减少污水处理厂的电力消耗,目前污水处理厂每年消耗约 70 亿千瓦时*3 的电力,相当于全国电力消耗的约 0.7%。
多年来,专业摄像机中的图像传感器能够捕捉比 Rec. 709 更多的色彩和更高的动态范围。这些摄像机使用内部图像处理将输出色域和动态范围限制在广播行业标准 Rec. 709 范围内。最近,许多专业摄像机都采用了“log”、RAW 和 HLG 录制格式,这些格式既可以包含比 Rec. 709 色域更宽的色彩范围,又可以包含比 SDR 显示器上显示的更高的动态范围。随着 iPhone 12 及更高版本以杜比视界录制,HDR 捕捉不再仅限于专业摄像机的领域。
玻色-爱因斯坦凝聚态 (BEC) 是物质的一种量子态,其中玻色子粒子在单一本征态中形成宏观种群。预测这种状态的理论 [ 1 ] 等待了 70 年才在实验室中被探索 [ 2 , 3 ],这一里程碑式的成就开启了近 30 年在超冷原子和量子模拟器领域的卓有成效的研究 [ 4 ]。然而,尽管取得了进展,常用的 BEC 测量技术在提供的信息方面并不完整。成像是 BEC 测量技术的核心。通过将光照射穿过原子云并记录其投射的阴影,可以提取特定状态下原子的密度。通常有两种成像模式:原位,对仍在陷阱内的云进行成像,或飞行时间 (TOF)。后者通过打开陷阱并记录云膨胀后的原子密度来完成 [ 5 ];它类似于在光学中测量“远场”的强度。如果粒子在膨胀过程中不相互作用,并且云的初始尺寸相对于最终膨胀尺寸可以忽略不计,则 TOF 图像提供云的动量分布,即波函数的空间傅里叶变换的幅度。如果存在相互作用,但最终密度足够低,以至于它们可以忽略不计,则测量的动量分布的动能反映初始动能加上相互作用能。这些成像模式仅捕获状态的部分信息,因为它们仅在单个时间点和单个平面上测量密度,无论是原位还是 TOF。然而,BEC 是量子对象,因此它们是物质波 [6],其特征是振幅和相位。因此,要表征 BEC,必须在它们演化过程中获得其在空间中任何地方的振幅和相位的完整图。因此,依靠这两种模式,创新的
• 提高他们对艺术和设计技巧的掌握,包括使用各种材料(例如铅笔、木炭、油漆、粘土)进行绘画、绘画和雕塑 其他课程链接 科学 - 太空 历史 链接到尊重权利的第 28 条 - 每个儿童都有接受教育的权利。小学教育必须免费,每个孩子都必须接受不同形式的中学教育。学校的纪律必须尊重儿童的尊严和权利。 链接到东北雄心 将课程与概念艺术家的职业联系起来。这份工作需要做什么?这份工作需要什么技能?概念艺术家可以专注于哪些专业领域?盖茨比基准 4 - 将课程学习与职业联系起来
电致发光螺纹的进步(适合编织或编织)为开发发光纺织品开了开门,推动了市场增长的柔性和可穿戴状态。尽管这些纺织品具有自定义设计和图案的直接绣花可能会带来可观的好处,但机器刺绣的严格需求挑战了这些线程的完整性。在这里,我们提出了刺绣多色的螺纹 - 蓝色,绿色和黄色,与标准刺绣机兼容。这些线程可用于将装饰设计缝合到各种消费织物上,而不会损害其耐磨性或发光功能。演示包括阐明有关消费产品的特定消息或设计,并在头盔衬里上发出紧急警报,以实现身体危害。我们的研究提供了一个全面的工具包,用于将发光纺织品集成到时尚的,定制的工艺品中,该工艺品是根据各种灵活和可穿戴式展示的独特要求量身定制的。
简介。— 生成非经典玻色子态 [1 – 3],例如压缩光、福克态和薛定谔猫态,不仅对量子力学的基础研究很重要,而且对量子技术的应用也很重要 [2,4 – 6]。例如,相空间中具有离散平移或旋转对称性的玻色子态 [7 – 14] 已被提议用于编码量子信息 [15 – 20],为硬件高效的量子纠错铺平了道路 [21 – 24]。可以通过例如交错的选择性数字相关任意相位 (SNAP) 和位移门 [25 – 27] 来制备和稳定玻色子代码态以防止耗散。最近的一系列研究 [28 – 31] 指出了一种基于汉密尔顿工程的替代被动控制方法,该方法可用于促进容错操作,例如通过抑制相位翻转错误 [28]、动态抑制与环境的耦合 [30] 以及加速代码字的状态准备 [31] 。汉密尔顿工程的另一个感兴趣领域是拓扑。由于相空间的非交换性质,在封闭的相空间环上移动的量子粒子获得类似于磁场中粒子的 Aharonov-Bohm 相的几何相。因此,相空间中的带隙格子汉密尔顿可以支持非平凡的陈数 [16,32 – 40] 。这是一个很有吸引力的特性,因为在具有物理边界的系统中,它将导致拓扑稳健的边缘传输。虽然已经展示了如何生成
