D. F. Liu 1,2 *†,Y。F. Xu 3 *†,H。Y. Hu 4 *,J。Y. Liu 5,6 *,T。P. Ying 7 *,Y。Y.
转录3(STAT3)的抽象信号换能器和激活因子是一个很好的转录因子,它介导了散装急性急性髓细胞性白血病(AML)细胞和白血病干细胞(LSC)中氧化磷酸化和谷氨酰胺摄取(LSC)。STAT3还显示出在AML细胞中的线粒体转移到线粒体,尤其是在丝氨酸727(PSTAT3 S727)残基处磷酸化时。对STAT3的抑制会导致线粒体功能受损并降低白血病细胞活力。我们在线粒体中发现了STAT3与电压依赖性阴离子通道1(VDAC1)的新型相互作用,该通道提供了一种机制,该机制通过该机制调节线粒体功能和细胞存活。通过VDAC1,STAT3调节线粒体中的钙和活性氧(ROS)平衡。STAT3抑制作用还导致LSC的植入潜力显着降低,包括对Venetoclax的主要样品。这些结果暗示STAT3是AML中的治疗靶标。引言急性髓细胞性白血病(AML)是一种遗传异质和高度攻击性的髓样肿瘤,预后不良。1,2 AML的标准治疗历史上由蒽环类和细胞押滨的诱导化学疗法组成,然后与造血干细胞移植或高剂量的细胞移植或高剂量的细胞固结。3最近,随着新颖的靶向疗法的出现,治疗选择扩大了。4-7然而,尽管响应率很高,但复发还是常见的。10,11 LSCs在其对线粒体活性和氧化磷酸化(OXPHOS)的优先依赖方面表现出了独特的脆弱性。6复发性疾病被认为源自抗治疗性白血病干细胞(LSCS)8的静止亚群,与诊断相比,在复发时发现,在复发时发现了更大的丰度,与9-12相比,与生存率负相关。12-14虽然与Venetoclax(VEN)抑制Bcl-2与甲基化剂(HMA)Azacitidine结合使用,但通过抑制OXPHOS表现出对LSC的选择性,但13个耐药性经常通过线粒体代谢或替代性抗副疗法途径的激活而改变。15-19进一步,先前对前线HMA/VEN进展的患者的先前研究表现出非常差的结果,HMA/VEN失败3个月或更短后,生存率中位数。20,21种针对LSC通过其对OXPhos的依赖的新策略具有重大关注,并且在几份报告中已经描述了7,13,22,但是需要进一步的研究来阐明这些观察结果的基础机制。转录3(STAT3)的信号换能器和激活因子已被证明对白血病生成很重要,并且已知在许多AML患者样品和细胞系中都高度表达。23-26在典型上,已知STAT3在残基Tyr 705处进行磷酸化,从而导致二聚化并转移到核中,在该细胞核中它作为调节细胞发育,更新,增殖和细胞死亡的转录因子的作用。24,27-29我们以前的工作还确定了STAT3的转录活性通过MYC-SLC1A5介导的途径调节线粒体功能。26尽管其描述了核作用为转录因子,但STAT3也被发现局部到线粒体。30,31先前的工作提出了线粒体中各种功能,包括调节电子传输链(ETC)活性,30-32线粒体基因的调节,33和线粒体钙通量的调节。34,35,而在Tyr 705(PSTAT3 Y705)和Ser 727(PSTAT3 S727)位点的STAT3磷酸化均在线粒体中都发现了30-32,35,36 Ser 727磷酸化对于调节
有效的蜂窝通信对于大脑调节肌肉收缩,记忆形成和回忆,决策和任务执行等多种功能至关重要。通过电气和化学信使(包括电压门控通道和神经递质)的快速信号传导来促进这种通信。这些使者通过传播动作电位和中介突触传播来引起广泛的反应。钙涌入和外排对于释放神经递质和调节突触传播至关重要。与氧化磷酸化有关的线粒体和能量产生过程也与内质网相互作用,以存储和调节细胞质钙水平。不同细胞类型中线粒体的数量,形态和分布根据能量需求而变化。线粒体损伤会导致过量的活性氧(ROS)产生。mitophagy是一个选择性过程,它通过自噬体 - 散糖体融合靶向并降解损坏的线粒体。线粒体中的缺陷会导致ROS和细胞死亡的积累。许多研究试图表征神经退行性疾病中线粒体功能障碍与钙失调之间的关系,例如阿尔茨海默氏病,帕金森氏病,亨廷顿氏病,黑肿瘤疾病,肌萎缩性侧面硬化症,脊髓灰质球脑性脑脑性无动脉症,染色。减少线粒体损伤和积累的介入策略可以作为治疗目标,但是需要进一步的研究来揭示这一潜力。本综述提供了与线粒体在各种神经元细胞中有关的钙信号传导的概述。它严格检查了最新发现,探讨了线粒体功能障碍可能在多种神经退行性疾病和衰老中起的潜在作用。此外,评论还确定了知识中现有的差距,以指导未来研究的方向。
需要支持多种机械和生物功能(如实现液体运输、促进再生和修复、抵抗不确定和随时间变化的机械需求)。[1–3] Wolf-Roux(机械稳态)定律表明,骨骼会随着机械需求的变化而沉积或吸收,[1,4,5] 指出优化在多尺度材料和结构的自然设计中发挥着作用。因此,结构优化是追求性能优化的仿生工程系统的一种很有吸引力的策略;然而,自然界中观察到的一系列功能极难完全融入基于优化的工程设计过程中。在这里,我们赋予结构优化方法和旋节线结构材料,这些材料模仿自然界中观察到的几种微观结构特征,这样我们就可以直接以设计中的刚度和轻量化为目标,并间接促进由微观尺度上的旋节线孔隙度和随机性促进的其他机械和生物功能。图1显示了在几种生物系统中观察到的微结构,这些微结构具有不同的孔径、孔形、密度和方向偏好,这些特征可以通过旋节线结构材料轻松模仿。旋节线结构材料是通过将旋节线相分解中的一个相解释为微结构材料而获得的。它们的非结构化、随机微结构特征已被证明可实现理想的工程性能(例如高机械弹性[9]、高能量吸收[10]和对缺陷不敏感[11]),这些性能通常超过结构化结构材料(例如桁架和板晶格)。此外,以高斯随机场(GRF)形式对旋节线相分解进行函数近似[12,13]可以广泛可调微尺度各向异性和孔隙率,从而实现显著的微结构设计自由。 [6] 底层函数表示也使得在任意方向和孔隙度的不同旋节线类(例如,图 1 中所示的各向同性、立方、层状和柱状结构)之间转换变得轻而易举。因此,旋节线结构材料为工程部件提供了一种途径,这些部件具有嵌入的、空间变化的微尺度特征,与结构化结构材料相比,这些特征提高了工程性能并增强了可制造性。旋节线结构材料的制造多功能性还使人们能够回归经典的多尺度
$ evwudfw 2 *urzwk lq wkh xvdjh ri khwhurjhqrxv lqwhlq和fklsohwv edvlq lq lq lqdqfhg lqdqfhg iru iru iru iru iru。 ohdglqj和olnh $,dqg +3&lv和iru jigh 1月份fkls vl] hv wkdw h [fhg] h [srvuh ilhog 6lpxowdqhrxhrxhrxvo \ wkhvh及其和这个and this ululqr plpdooohu olqhzlgwkwk frqhfwlqv lq lq wkhlu uhglvwlrq od \ huv wr phw wwhw wwis,2 ghqvlw \ and edqglgwk和anyshophudqfhqwv,q wklv sdshu ghprqvwudwh和iru这是olqhv olqhv和iLhog vilwfk erxqgdu \ whvwv what what and lpsdfw ri lpsdfw ri。 whf vwfulfdo uhvlvwdqfh ru ohdndjhqw fxuhqw:vkrz wkdw word and lv yldeow wruw wruw ilqs ilqs ilood isisis isisis isisisisisisisisisionary isisisisisionary iruju odujh odujh odujh DUHD SDFNDJHV