在受控条件下,为材料和设备(包括但不限于武器系统组件)的开发、质量保证或可靠性而进行的户外测试和实验。涵盖的行动包括但不限于燃烧测试(例如电缆耐火性或燃料燃烧特性测试)、冲击测试(例如使用指定并经常用于此目的的土堤或混凝土板进行的气动喷射器测试)或跌落、穿刺、浸水或热测试。涵盖的行动不涉及源、特殊核或副产品材料,但根据适用标准制造的包含源、特殊核或副产品材料的封装源可用于非破坏性行动,例如探测器/传感器开发和测试以及急救人员现场培训。B3.15 使用纳米级材料的小规模室内研究和开发项目
CS4192 是单片 BiCMOS 集成电路,用于将来自微处理器/微控制器的 10 位数字字转换为互补直流输出。直流输出驱动通常用于车辆仪表板的空心仪表。10 位数据用于直接线性控制仪表的正交线圈,在仪表的整个 360° 范围内具有 0.35° 分辨率和 ± 1.2° 精度。来自微控制器的接口是通过串行外设接口 (SPI) 兼容串行连接,使用高达 2.0 MHz 的移位时钟速率。数字代码与所需的仪表指针偏转成正比,被移入 DAC 和多路复用器。这两个块提供切向转换功能,可将数字数据转换为所需角度的适当直流线圈电压。在 45 ° 、135 ° 、225 ° 和 315 ° 角处,切向算法在仪表运动中产生的扭矩比正余弦算法大约高 40%。这种增加的扭矩减少了由于这些临界角度下的指针下垂而导致的误差。每个输出缓冲器能够为每个线圈提供高达 70 mA 的电流,并且缓冲器由公共 OE 启用引脚控制。当 OE 变为低电平时,输出缓冲器关闭,而芯片的逻辑部分保持通电并继续正常运行。OE 必须在 CS 下降沿之前处于高电平才能启用输出缓冲器。状态引脚 (ST) 反映输出的状态,并且在输出被禁用时处于低电平。串行仪表驱动器具有自我保护功能,可防止发生故障。每个驱动器均受到 125 mA(典型值)过流保护,而全局热保护电路将结温限制在 170°C(典型值)。只要 IC 保护电路检测到过流或过温故障,输出驱动器就会被禁用。驱动器保持禁用状态,直到 CS 上出现下降沿。如果故障仍然存在,输出驱动器将再次自动禁用。
高维纠缠的光状态为量子信息提供了新的可能性,从量子力学的基本测试到增强的计算和通信效果。在这种情况下,自由度的频率将鲁棒性的资产结合在一起,并通过标准的电信组件轻松处理。在这里,我们使用集成的半导体芯片来设计直接在生成阶段的频率键入光子对的波函数和交换统计,而无需操作后。量身定制泵束的空间特性,可以产生频率与年轻相关,相关和分离状态,并控制光谱波函数的对称性,以诱导骨气或费米子行为。这些结果是在室温和电信波长下获得的,开放有希望的观点,用于在整体平台上使用光子和光子的量子模拟,以及利用反对称高度高维量子状态的通信和计算方案。
随着信息技术迈向大数据时代,传统的冯·诺依曼架构在性能上显示出局限性。计算领域已经在应对访问内存所需的延迟和带宽(“内存墙”)以及能量耗散(“电源墙”)方面遇到了很多困难。这些具有挑战性的问题,例如“内存瓶颈”,要求进行大量的研究投资来开发下一代计算系统的新架构。脑启发计算是一种新的计算架构,为人工智能计算提供了一种高能效和高实时性的方法。脑启发神经网络系统基于神经元和突触。忆阻器件已被提议作为创建神经形态计算机应用的人工突触。在本研究中,对后硅纳米电子器件及其在脑启发芯片中的应用进行了调查。首先介绍了神经网络的发展,回顾了当前典型的类脑芯片,包括以模拟电路为主的类脑芯片和全数字电路的类脑芯片,进而引出了基于后硅纳米电子器件的类脑芯片设计。然后,通过对N种后硅纳米电子器件的分析,阐述了利用后硅纳米电子器件构建类脑芯片的研究进展。最后,对基于后硅纳米电子器件构建类脑芯片的未来进行了展望。
International (Beijing) Corporation 中芯国际集成电路制造(北京)有限公司
摘要:智能纺织品因其在简化生活方面的潜在应用而引起了广泛关注。最近,通过将电子元件整合到导电金属纱线上/内来生产智能纺织品。表面贴装电子设备 (SMD) 集成电子纱线的开发、特性和机电测试仍然有限。由于非细丝导电纱线具有突出的纤维,因此容易发生短路。确定最佳构造方法并研究影响基纱纺织性能的因素非常重要。本文研究了不同外部因素(即应变、焊盘尺寸、温度、磨损和洗涤)对 SMD 集成镀银 Vectran (SCV) 纱线电阻的影响。为此,通过应用气相回流焊接方法将 SMD 电阻器集成到 SCV 纱线中来制造 Vectran 电子纱线。结果表明,导电线规长度、应变、重叠焊盘尺寸、温度、磨损和洗涤对 SCV 电子纱的电阻性能有显著影响。此外,根据实验,由 SCV 导电线和 68 Ω SMD 电阻制成的电子纱的最大电阻和功率为每 0.31 m 长度 72.16 Ω 和 0.29 W。因此,这种电子纱的结构也有望为制造可穿戴导电轨道和传感器带来巨大好处。
“Shanghai Huaxin” Shanghai Huaxin Venture Capital Partnership (Limited Partnership) ( 上海华芯创业投资合伙企业( 有限合伙), formerly known as Shanghai Huaxin Venture Capital Enterprise ( 上海华芯创业投资企业)), a non-company foreign-invested enterprise (Chinese-foreign cooperation) ( 非公司外商投资企业( 中外合作)) established under the laws of the PRC on March 31, 2011 and converted to a limited partnership on January 4, 2025, and one of our Shareholders
近年来,半导体、电子、光学、MEMS、生物医药等诸多领域对复杂形状的三维结构的需求日益增加。迄今为止,大多数微结构制造工艺源自半导体工艺,例如硅晶片的薄膜加工和厚膜加工1-3。这些过程不可避免地需要曝光过程。曝光工艺由于需要使用特殊的设备,成本较高,并且在材料方面也受到很多限制。因此,不使用曝光工艺的微结构制造技术的研究正在积极开展。代表性例子包括微加工和微电火花加工 (microEDM)1,4 等机械方法。特别是随着相关产业的发展,具有三维形状的微型齿轮零件的需求量也日益增大,而实现此类零件的批量生产是实现工业化的必要条件。通过使用模具的注塑工艺,可以大规模生产微型齿轮部件。注射成型根据成型材料不同分为塑料注射成型和粉末注射成型,而粉末注射成型又根据所用粉末的种类分为MIM(金属注射成型)和CIM(陶瓷注射成型)。目前,塑料齿轮一般采用塑料注塑工艺进行量产,但众所周知的事实是,采用塑料材料制造的微型齿轮零件在刚性和耐久性方面存在着极限。因此,最近正在积极研究使用粉末金属注射成型工艺而非塑料来生产微型齿轮零件。本研究是通过金属注射成型工艺制造微型齿轮状产品的基础研究。目的是利用粉末注射模芯的微细电火花加工来制造微型齿轮状芯。
KPR 集团成立于 1984 年,凭借良好的业绩记录,已成为增长最快的企业集团之一,业务成功从纺织扩展到糖、乙醇、可再生能源、教育和汽车。KPR 始终坚持“质量”的准则,无论其生产什么或提供服务,KPR 都生产一系列令人兴奋的纺织品,例如成衣针织服装;面料;紧密纱、混色纱、普梳纱、涤纶、精梳纱和红标纱。该集团采用最新技术和工艺,为全球 60 多个国家的客户提供卓越品质的产品。为 30,000 多名员工(90% 为女性)提供有意义的职业机会。KPR 创造更好的产品,同时打造更安全、更高效、更环保的工作场所。KPR 采取全面的可持续发展方针,从可再生能源中获取电力,共同努力保护环境;通过增强妇女权能和促进社区发展,KPR 始终坚定不移地追求卓越运营、促进社会进步,并致力于重新定义印度服装行业的标准。