雏菊家族,阿斯特拉科。该物种由Short(2009)描述为“多年生的根茎草药,俯卧,到50厘米长,无毛,除了非常偶尔的多细胞,圆锥形的腺体头发c。0.1-0.15毫米长。Leaves basal and cauline, alternate, lowermost leaves sometimes tapering to a petiole-like base but most leaves manifestly sessile and often subamplexicaul, somewhat narrowly oblong or narrowly elliptic or sometimes ovate-lanceolate to lanceolate or rarely a few oblanceolate, 11–38 mm long, 3.5–11 mm wide, leaf apices usually truncate and 3-dentate, the teeth of about equal length and宽度很少,很少逐渐缩小到一个点,否则叶边缘否则整个或有时在每个边缘上有1或2个额外的短而狭窄的横向叶,并且通常沿层长的长度沿着大约1⁄2左右,所有叶子都叶片柔软或边缘,偶尔的垂直茎的垂直腺体小于c。长0.1毫米。Capitula c。直径为6毫米,在肩cap上明显超过上叶。 片段的片段,重叠,卵形至披针形或椭圆形到狭窄的披针形,长2.2-2.5毫米,宽0.7-0.8毫米,宽,subobtuse,subobtuse,较薄的草药,主要是透明的,透明的,微光,几乎是散落的,除了散射的毛发毛发,除了散落的毛发毛发,均为斑点;立体观念分裂。 插座尺寸,是无毛的。 射线小花c。 40在最大的吉柱中;花冠c。 8.5毫米长,宽1.2–1.3毫米,白色,顶端有4个静脉。 Apex Untobed或2或3个几乎无法辨别的裂片;样式c。 1.45毫米长。 雄蕊5;细丝衣领几乎笔直或向底座扩张;花药1.25–1.36毫米长,Capitula c。直径为6毫米,在肩cap上明显超过上叶。片段的片段,重叠,卵形至披针形或椭圆形到狭窄的披针形,长2.2-2.5毫米,宽0.7-0.8毫米,宽,subobtuse,subobtuse,较薄的草药,主要是透明的,透明的,微光,几乎是散落的,除了散射的毛发毛发,除了散落的毛发毛发,均为斑点;立体观念分裂。插座尺寸,是无毛的。射线小花c。40在最大的吉柱中;花冠c。 8.5毫米长,宽1.2–1.3毫米,白色,顶端有4个静脉。 Apex Untobed或2或3个几乎无法辨别的裂片;样式c。 1.45毫米长。雄蕊5;细丝衣领几乎笔直或向底座扩张;花药1.25–1.36毫米长,圆盘小花也许c。最大的Capitula中有80个或更多;花冠带2.1–2.45毫米长,外部有散射的,长的,腺体的头发,5叶,黄色,没有顶毛的裂片,静脉延伸到裂片的顶点。
总结花粉壁外部为雄性配子体提供了一个保护层,并且主要由孢子囊素组成,其中包括脂肪酸衍生物和酚类。但是,外部外部的生化性质知之甚少。在这里,我们表明,在没有脊柱花粉(GHNSP)中突变的棉花1355a导致外部形成缺陷。通过基于地图的克隆鉴定了GHNSP基因座,并通过遗传分析(使用CRISPR/CAS9系统的共处测试和等位基因预测)确认。原位杂交表明,GHNSP在tapetum中高度表达。ghnsp编码与ATQRT3同源的多边形乳糖苷酶蛋白,该蛋白在花粉外外的形成中提出了聚半乳糖苷酶的功能。这些结果表明GHNSP在功能上与ATQRT3不同,后者具有微孢子分离的功能。生化分析表明,在发育阶段8的1355a花药中,去酯果胶的百分比显着增加。此外,使用对抗酯的抗体和酯化的均质均质乳糖醇(JIM5和JIM7)的抗体研究表明,GHNSP突变体在录音带中表现出丰富的脱骨含量同质性的,它具有磁带和外在的,具有特殊的远处,具有较为有效的效果。GHNSP的表征提供了对多边形乳糖醛酸酯酶和去酯的同型乳半乳糖醇在花粉外部形成中的作用的新理解。
抽象的人群物种,尤其是trichocarpa,长期以来一直是基因组研究的模型树,这是由于完全测序的基因组。然而,高杂合性和重复区域的存在,包括丝粒和核糖体RNA基因簇,剩下了59个未解决的间隙,占三分法P. trichocarpa基因组的3.32%。在这项研究中,改进了愈伤组织诱导方法,以从P. ussuriensis花药中得出双倍的单倍体(DH)愈伤组织。利用长阅读测序,我们成功地组装了一个几乎没有间隙的,端粒到telomere(T2T)P。ussuriensis基因组,跨越了412.13 MB。该基因组组件仅包含7个间隙,其重叠n50长度为19.50 MB。注释显示该基因组中有34,953个蛋白质编码基因,比trichocarpa多465个。值得注意的是,中心区域的特征是高阶重复序列,我们在所有DH基因组染色体中鉴定了和注释的中心粒区域,这是杨树的第一个。衍生的DH基因组表现出与毛thocarpa的高共线性,并显着填补了后者基因组中存在的空白。此T2T P. ussuriensis参考基因组不仅会增强我们对基因组结构的理解,并在杨树属内的功能增强了我们的功能,而且还为杨树基因组和进化研究提供了宝贵的资源。
BIO/301 12 解剖板,软木,凸起的边缘和排水槽,约 450 x 300 毫米。 BIO/302 2 软木,薄片,5 毫米厚,250 x 100 毫米,每包 10 个 BIO/303 1 解剖针,镀钢,长度 50 毫米,每包 100 个 第 4 部分:准备好的显微镜载玻片 生物学 BIO/400 1 动脉和静脉(组合),ts(染色) BIO/401 1 正常人体血液 BIO/402 1 葱属(洋葱)表皮 BIO/403 1 哺乳动物肺组织 BIO/404 1 肠(大),ts BIO/405 1 肾脏,ts BIO/406 1 肾脏,整个,ls BIO/407 1 肝脏,腺组织 BIO/408 1 哺乳动物柱状上皮细胞组织 BIO/409 1 神经,神经节,ts BIO/410 1神经、脊髓、ts、神经细胞、白质和灰质 BIO/411 1 食道、ts BIO/412 1 卵巢、ts、哺乳动物 BIO/413 1 胃壁、心脏末端、vs BIO/414 1 精子、人类精子涂片 BIO/415 1 睾丸、ts、大鼠 BIO/416 1 变形虫、整个、染色 BIO/417 1 哺乳动物纤毛上皮细胞组织 BIO/418 1 染色体、雄性、人类、正常 BIO/419 1 染色体、雌性、人类、正常 BIO/420 1 有丝分裂、洋葱根尖 BIO/421 1 双子叶植物茎、TS BIO/422 1 百合、花药、带有成熟花粉粒的 TS BIO/423 1 叶、双子叶植物被子植物,TS
植物从转基因树种或外来树种迁移到附近土地或通过与野生近缘种杂交而产生的基因流动是公众和监管机构关注的焦点。目前已存在许多减轻潜在基因流动的遗传策略;然而,开花开始的长期延迟严重制约了研究的进展。在通过 CRISPR 敲除杨树关键花基因 LEAFY 和 AGAMOUS 的同源物后,我们利用热诱导的 FT 过表达来加速对预期花表型的评估。我们选择了先前表征的 CRISPR-Cas9 诱导的双等位基因变化的事件,然后用在强组成型启动子或热诱导启动子控制下的拟南芥 FLOWERING LOCUS T (AtFT) 基因重新转化它们。我们成功地在杨树的雄性和雌性克隆中获得了开花,在花、分株和插入事件中观察到了各种各样的花序和花形态。总体而言,从选定的 LFY 和 AG 靶向事件中获得的花与这些基因功能丧失的预测一致。LFY 靶向事件显示具有叶状器官的小柔荑花序,AG 靶向事件具有嵌套花器官,与花确定性降低和缺乏形成良好的心皮或花药一致。这些发现证明了杨树花在遗传加速开花过程中具有很大的发育可塑性,这可能具有园艺价值。它们还提供了有关这两个基因靶标敲除后花表型和表观不育性的有益早期观察。
摘要背景:番茄(Solanum lycopersicum L.)是全球经济上有价值的作物。由于使用无菌性雄性会降低F1种子产量的成本,因此男性不育的创新对于番茄育种具有重要意义。中止的微孢子基因(AMS)编码为基本的螺旋 - 环螺旋(BHLH)转录因子编码,以前已被指定为拟南芥和水稻中tape虫发育的必不可少的基因。确定SLAM基因的功能(来自S. lycopersicum的AMS基因),并验证它是否是产生番茄中雄性无菌性的潜在候选基因,我们使用病毒诱导的基因沉默(VIGS),CRIS/CAS9介导的介导的基因组编辑和过度表达技术来通过AgrobstermaTer transfote transfortium tomato tonrestim tonrection tonrys tomato。结果:在这里,来自S. lycopersimum的1806 bp的全长猛击基因(登录号MK591950.1)从花粉cDNA克隆。花粉颗粒染色的结果表明,猛击的不可行的花粉比例 - 沉默(75%), - 敲除(89%)和超过表达植物(60%)明显高于野生型植物(小于10%; p <0.01)。在三种情况下,不可生存的花粉颗粒的形态似乎是四方,循环,萎缩,萎缩或以其他方式形状的形态,而野生型的形态则显得椭圆形和丰满。更重要的是,QRT-PCR分析表明,在大满贯和敲除的植物的花药中的猛击的表达明显低于野生型的表达(p <0.01),但在大量过表达的植物中的表达(p <0.01)(p <0.01)。
植物雄性不育 (MS) 是指植物无法产生功能性花药、花粉或雄配子。开发 MS 系是植物育种计划中最重要的挑战之一,因为建立 MS 系是 F1 杂交生产的主要目标。出于这些原因,已在几种具有经济价值的物种中开发了 MS 系,特别是在园艺作物和观赏植物中。多年来,MS 已通过许多不同的技术实现,从基于交叉介导的传统育种方法的方法到基于遗传学和基因组学知识的先进设备,再到基于基因组编辑 (GE) 的最先进分子技术。GE 方法,特别是由 CRISPR/Cas 相关工具介导的基因敲除,已经产生了灵活而成功的战略思想,用于改变关键基因的功能,调节包括 MS 在内的许多生物过程。这些精准育种技术耗时较少,可通过积累有利等位基因加速新遗传变异的产生,能够显著改变生物过程,从而提高品种开发绕过有性杂交的潜在效率。本文的主要目的是概述植物雄性不育方面的见解和进展,重点介绍最近通过靶向特定核基因座诱导 MS 的新型育种 GE 应用。本文总结了近期 CRISPR 技术的潜在机制和主要作物和观赏植物的相对成功应用。本文将讨论 CRISPR/Cas 系统在 MS 突变体生产中的未来挑战和新潜在应用以及其他潜在机会,例如通过瞬时转化系统生成 CRISPR 编辑的无 DNA 和跨代基因编辑以引入所需等位基因和精准育种策略。
在气候变化中,极端温度、干旱、盐度和重金属毒性等非生物胁迫严重影响植物的生长和生产力,导致形态发育受损并对植物健康产生负面影响(Hasanuzzaman 和 Fujita,2022;Bhardwaj 等,2023)。这些胁迫会导致植物的形态变化,例如芽和根生长减缓、花药开裂不良、花粉活力丧失、花朵掉落增加、花朵受精减少、种子萎缩和灌浆期缩短。此外,叶片衰老、失绿、坏死、灼伤和脱落进一步加剧了对植物生长的不利影响。 ( Saxena 等人,2019 年;Dumanovic ́ 等人,2021 年;Hasanuzzaman 和 Fujita,2022 年;More 等人,2023 年)。为了抵消这些有害影响,植物采用了各种适应和耐受机制。最近的研究集中于揭示植物对非生物胁迫的反应机制。生理干预,例如由脱落酸 (ABA) 信号通路介导的气孔调节、离子稳态和渗透调节,对于植物适应干旱和盐胁迫至关重要( Kuromori 等人,2022 年;Li 等人,2020 年)。此外,活性氧 (ROS) 清除酶和抗氧化系统在减轻热诱导的氧化损伤和促进耐热性方面的作用也已得到阐明(Dumanovic ́ 等人,2021 年;Mittler 等人,2022 年)。激素信号通路与抗氧化防御系统、离子稳态和渗透调节的相互作用也已得到强调(Ramegowda 等人,2020 年;Singhal 等人,2021 年)。全基因组转录组研究为转录因子、microRNA 和应激反应蛋白等应激反应基因提供了宝贵的见解(Liu 等人,2022 年)。CRISPR-Cas9 技术已成功应用于开发抗非生物胁迫作物,这得益于用于设计合适 CRISPR/Cas9 的生物信息学工具
摘要:xa13是一个隐性多效基因,对水稻抗病性起正向调控作用,对水稻育性起负向调控作用,严重制约了其在水稻育性中的应用。本研究利用CRISPR/Cas9基因编辑技术删除Xa13基因启动子部分序列,包括病原菌诱导表达元件,使编辑后的启动子区水稻失去病原菌诱导基因表达能力,但不影响叶片和花药中背景基因的表达,从而获得抗病性和正常产量。研究还筛选出一株删除目的序列、分离T 1 代(无转基因株系)外源转基因片段的抗病、育性正常植株家系,并对T 2 代水稻的重要农艺性状进行了研究。结果表明,添加/不添加外源DNA的T 2 代水稻在抽穗期、株高、单株穗数、穗长和田间结实率等方面与野生型均无统计学差异。成功转化2个重要常规水稻品种空育131(KY131,耿/粳稻)和黄华占(HHZ,鲜/籼稻),并获得抗病、丰产材料,是目前我国2个经过改良后可直接用于生产的重要常规水稻品种。转基因水稻(KY-PD和HHZ-PD)叶片中Xa13基因在病原菌侵染后没有被诱导表达,表明此方法可普遍有效应用,有利于推动xa13这一隐性抗病多效基因在水稻抗白叶枯病方面的实际应用。通过编辑基因非编码区调控基因表达的研究,为今后开展分子设计育种提供了新思路。
摘要:细胞色素P450(CYP450)单加氧酶超家族,它参与了许多主要和次级代谢物的生物合成途径,在植物生长和发育中起着重要作用。然而,先前未被发现了有关甘蓝纳普斯(BN-CYP450)中CYP450的全身信息,其生物学意义远未理解。氏族86 CYP450的成员,例如CYP704B,对于在植物男性繁殖中形成花粉外壳至关重要,并且已使用CYP704B基因的靶向诱变来在许多农作物中创建新的雄性无菌系。在本研究中,在甘蓝纳普斯品种“中舒安11”(ZS11)中鉴定了总共687个BNCYP450基因,其与拟南芥中的CYP450成员近2.8倍。与拟南芥相比,甘蓝纳普斯是一家具有较大基因组的四倍体油厂,因此可以理性地估计。将BNCYP450基因分为47个亚家族,并将其聚集成9个氏族。系统发育关系分析表明,CYP86家族由四个亚家族和109个BNCYP450组成。CYP86基因的成员在不同组织中显示出特定的表达曲线,并响应ABA和非生物胁迫。CYP704内CYP86氏族,BNCYP704B1A和BNCYP704B1B的两个BNCYP450S在MS26(男性无菌26,也称为CYP704B1)中显示出高的模拟性。这两个BNCYP704B1基因在年轻的芽中特异性表达。然后,我们同时通过簇状的定期间隔短的Palindromic重复序列/CRISPR相关的细胞蛋白9(CRISPR/CAS9)基因组工程系统来淘汰这两个BNCYP704B1基因。编辑的植物在成熟的花药中表现出无花粉的无菌表型,这表明我们在甘蓝乳胶中成功地再现了基因男性不育(GMS,也称为核男性无菌性)线。这项研究提供了BNCYP450S的系统性视图,并提供了一种策略,以促进CRISPR/CAS9系统的商业实用性,以通过敲除Rapeseed的Rapeseed快速生成GMS,通过敲除GMS控制基因。