代表着一种更可靠、更安全、生命周期更长的替代方案。通过湿纺技术成功获得了许多由石墨烯、碳纳米管、导电聚合物以及最近的 MXenes 制成的纤维,并研究将其作为可穿戴超级电容器的一维电极。[17–29] 然而,这些材料通常涉及复杂的合成程序、有害的分散剂溶剂或后处理步骤,以生产出具有足够机械阻力和电化学性能的纤维。芳族聚酰胺纳米纤维 (ANF) 最近被提议作为一种新的纳米级构建块来设计新的复合材料。[30] 与基于单体聚合的标准路线相反,ANF 可以通过自上而下的方法轻松快速地获得,通过溶解芳族聚酰胺聚合物链,然后通过溶液加工重新组装成宏观纤维或薄膜。[30,31] 芳族聚酰胺聚合物以其机械强度而闻名,但它不导电,必须负载导电填料才能实现电子传输。到目前为止,ANF 主要被研究用作聚合物增强体的填料[32,33]、多功能膜的基质[34–37]、隔热罩[38,39],甚至用作隔膜的添加剂和锂离子电池的固态电解质。[40,41] 然而,尽管 KNF 分散体具有良好的湿纺性,但人们对使用 ANF 来制造 FSC 却关注甚少。在之前的工作中,Cao 等人通过共湿纺核碳纳米管分散体和鞘 ANF 分散体制备了具有核壳结构的纤维。[42] 通过用 H3PO4/PVA 凝胶电解质渗透获得的对称 FSC 显示出高达 0.75 mF cm −1 的显著线性容量。Wang 等人将石墨烯纳米片 (GNPs) 加载到 ANF 分散体中,通过在水/乙酸溶液中凝固获得 ANFs/GNPs 复合线状电极。[43] 然而,他们的结果表明,GNPs 通过恢复对苯二甲酰胺单元之间的氢键干扰了 ANFs 的凝固,导致在 ANFs 基质中 GNPs 高含量时拉伸强度持续下降。在这项工作中,PEDOT:PSS@KNFs 复合纤维通过一个简单的两步工艺生产出来,包括将 Kevlar 纳米纤维化为 Kevlar 纳米纤维 (KNF)、KNF 纤维的湿纺以及随后浸泡在 PEDOT:PSS 水分散体中。以这种方式,由于导电的 PEDOT:PSS 链渗透而几乎保持 KNF 基质的机械阻力不变,因此获得了导电纤维。 PEDOT:PSS@KNF 纤维具有柔韧性、可编织、可缝纫等特点,通过耦合相邻的两根纤维,可以形成对称的 FSC。
Leech Lake 部落道路办公室正在寻求合格的建筑公司或总承包商 (GC) 的提案,以设计和建造一个新的盐储存建筑,该建筑面积为 65' x 48' 平方英尺。提供永久性矩形张拉膜覆盖桁架式建筑的设计和施工。该结构应达到或超过本规范的性能标准。Leech Lake 部落道路已评估了不同风格的织物结构,并确定本出版物不应被解释为限制性的,而应被解释为质量和性能的衡量标准,所有其他织物结构都将与之进行比较。项目现场将由 Leech Lake Band of Ojibwe (LLBO) 清理、准备和分级。设计和建造的所有其他部分都将由 GC 按照明尼苏达州建筑规范完成,并在完成后获得入住许可证。
二维 (2D) 过渡金属二硫属化物已成为下一代光电和自旋电子器件的有前途的平台。使用胶带进行机械剥离仍然是制备最高质量的 2D 材料(包括过渡金属二硫属化物)的主要方法,但总是会产生小尺寸的薄片。这种限制对需要大规模薄片的研究和应用构成了重大挑战。为了克服这些限制,我们探索了使用最近开发的动力学原位单层合成法 (KISS) 制备 2D WS 2 和 WSe 2。特别是,我们关注了不同基质 Au 和 Ag 以及硫族元素原子 S 和 Se 对 2D 薄膜产量和质量的影响。使用光学显微镜和原子力显微镜表征了 2D 薄膜的晶体度和空间形貌,从而对剥离质量进行了全面评估。低能电子衍射证实 2D 薄膜和基底之间没有优先取向,而光学显微镜则表明,无论使用哪种基底,WSe 2 在生成大单层方面始终优于 WS 2。最后,X 射线衍射和 X 射线光电子能谱表明 2D 材料和底层基底之间没有形成共价键。这些结果表明 KISS 方法是非破坏性方法,可用于更大规模地制备高质量 2D 过渡金属二硫属化物。
(a)芳族卤素化合物:芳香族卤素化合物(双重分子位移,苯甲基机制)中的核和化学反应性,核和侧链卤素,核和侧链卤素化。环取代基在亲核取代中的作用。烷基,烯丙基,芳基,苄基和乙烯基卤化物对亲核取代的相对反应性。(b) Alcohols : Classification, method of preparation (hydration, hydroboration-oxidation and oxymercuration-reduction, reaction of alcohols, distinction between primary, secondary and tertiary alcohols (Victor Meyer's test, Lucas's test, Oxidation by K 2 Cr 2 O 7 and metallic Cu), preparation and chemical reactions of glycol (HNO 3 , HCl, PX 3 , terephthalic酸,氧化)和甘油(HNO 3,HI,草酸,KHSO 4)(c)环氧化物:环氧化物和与醇的反应,HCN,NH 3,Amines和Lialh 4。(d) Phenols : Nomenclature, Preparation (from benzene diazonium salts, benzene sulphonic acids and cumene), physical properties and acidic character, comparison of acid strength of phenols with alcohols, effect of substituents on acidity of phenols, chemical reactions: nitration, halogenation, sulphonation, Kolbe's reaction, Reimer-Tiemann reaction,苯酚 - 醛树脂。
L. An 博士、B. Liang、CN Li、YL Huang 博士、Y. Hu、Z. Li、JN Armstrong 教授、D. Faghihi 教授、SQ Ren 教授,纽约州立大学布法罗分校机械与航空航天工程系、能源环境与水研究所研究与教育,美国纽约州布法罗 14260。电子邮件:shenren@buffalo.edu JY Wang,SQ Ren 教授 纽约州立大学布法罗分校化学系,美国纽约州布法罗市 14260 Z. Guo,C. Zhou 教授 纽约州立大学布法罗分校工业与系统工程系,美国纽约州布法罗市 14260 SQ Ren 教授 纽约州立大学布法罗分校能源、环境与水 (RENEW) 研究所研究与教育,纽约州布法罗市 14260 关键词:可穿戴纺织品、芳纶纤维、恶劣环境、气凝胶复合材料、制造
采用多种高性能纤维织物制造轻量化、高强度的复合材料是织物的发展趋势,本文基于复合材料结构性能一体化设计原理,以高强度高模量的芳纶纤维和低密度高韧性的PBO纤维作为增强材料,以碳纤维材料作为改性材料,采用RTM成型工艺制备了多种层合结构的CF-ANF-PBO超混杂三维复合材料,根据ANF/PBO体积分数设计了不同混杂结构的织物复合材料,并研究了不同混杂结构复合材料的力学性能。结果表明:当ANF/PBO体积分数达到100%时,未改性条件下复合材料的拉伸模量和强度最大,分别为68.81 GPa和543.02 MPa,而加入碳纤维改性后拉伸模量和强度分别为73.52 GPa和636.82 MPa,拉伸模量和拉伸强度性能总体改善分别为6.8%和17.27%,可以看出碳纤维的加入明显改善了芳纶和PBO纤维复合材料的性能。
可以通过Zn-Modifified沸石催化剂进行有效执行的光烯烃转化为高价的芳族烃。1–4已使用了各种方法2,5用于在沸石中加载锌,因此,锌物种,沸石孔内和晶体的外表面的不同类型,尺寸和局部位置已被考虑用于催化的机制。6–8在这方面,正确表征载入沸石的锌物种的状态至关重要。在最近的工作中,我们使用以下实验技术来研究Zeolites中的Zn物种:8个扩展的X射线吸收细胞(EXAFS),X射线光电子光谱(XPS)和弥漫性反射红外傅立叶傅立叶傅立叶变换光谱(Refrancopopicy),后来用于
1. 确诊病例定义为使用诊断测试在临床标本中检测到 SARS-CoV-2。新病例定义为月度报告时间段内的阳性检测。延迟病例定义为月度报告时间段前几个月的阳性检测。2. 确诊死亡是一份死亡证明,其中列出了 COVID-19 疾病或 SARS-CoV-2 作为死亡的根本原因。3. 最新疫苗:已接种 COVID-19 疫苗的人,如果他们接种了 CDC 推荐的最新 COVID-19 疫苗。6 岁及以上的每个人都应接种 1 剂最新的 Pfizer-BioNTech 或 Moderna Covid-19 疫苗以保持最新状态。6 个月至 5 岁的儿童可能需要多剂 COVID-19 疫苗才能保持最新状态,包括至少 1 剂最新的 Pfizer-BioNTech 或 Moderna Covid-19 疫苗。为了反映 CDC 对最新性定义的变化,我们将仅报告已及时接种疫苗的居民百分比。目前,我们将不再报告部分接种疫苗或已完成主要系列接种的人数百分比 4. 住院率 = 每 10 万人中的 COVID 入院人数。5. 随着收到更多延迟病例通知,每月计数可能会发生变化。此数据由纳瓦霍卫生部 (NDOH) 和纳瓦霍流行病学中心 (NEC) 提供,仅供公众参考。数据从各种来源收集,NEC 尽一切努力确保数据的准确性和可靠性,但是,数据“按原样”提供,不提供任何形式的担保。NDOH/NEC 对所提供的数据或信息的质量、准确性、可靠性、及时性、有用性或完整性不承担任何责任。数据不应被用作建议,或替代专业人士的具体建议。请注意,数据可能存在收集、分析和表示方面的错误,可能无法满足用户的需求或期望。错误可能无法始终得到纠正,任何数据使用风险均由用户承担。
致力于开发用于制备苯唑骨骨骼的效果方法。单原子插入代表了杂环合成的最有趣的方法之一,并为获取有价值的苯并牙素建立了新的机会。在此,我们报告了一种反应,其中氮原子直接插入麦诺尔,以通过叠氮化物中间体产生相应的苯唑环环(图1d)。为了将氮原子插入舞台,我们建议利用艾尔诺尔作为底物,这可以破坏芳族环的稳定性。noLs可以用作位置选择性氮插入中的指导组。与苯环添加到32 - 35中不同,该策略有助于C - C键裂解,更重要的是,实现了现场选择性的氮原子插入。