USS MICHAEL MONSOOR (DDG-1001) “欢迎您的指挥赞助团队登船!” 欢迎登船,祝贺您被任命为 USS MICHAEL MONSOOR (DDG-1001) - 美国海军有史以来技术最先进的导弹驱逐舰。我们期待与您会面,了解您,并与您合作,让这艘伟大的船焕发生机!如果您尚未被分配赞助商,请发送电子邮件至赞助商@ddg1001.navy.mil 进行请求。如果您在准备执行命令时以及在前往船上途中有任何问题,请随时联系您的赞助商和/或 COC。我们在这里为您提供帮助,并希望实现顺利的转移过程。如果您有任何问题或特殊需求,请立即联系我们。欢迎加入 Shipmate!指挥官 执行官 CAPT V. A. Fortson CAPT M. A. Smidt USS MICHAEL MONSOOR (DDG-1001) USS MICHAEL MONSOOR (DDG-1001) 单位 100403 箱 1 单位 100403 箱 1 FPO, AP 96694 FPO, AP 96694 电子邮件:CO@ddg1001.navy.mil 电子邮件:XO@ddg1001.navy.mil 指挥士官长 赞助协调员 CMDCM K. Freyberg FCC Shannon / OS1 Allen USS MICHAEL MONSOOR (DDG-1001) USS MICHAEL MONSOOR (DDG-1001) 单位 100403 箱 1 单位 100403 箱 1 FPO, AP 96694 FPO, AP 96694电子邮件: CMC@ddg1001.navy.mil 后甲板: (619) 952-8653 电子邮件: sponsor@ddg1001.navy.mil
如果不立即使用金属屋顶或墙板,应将面板存放在阴凉干燥的地方。如果可能,应将其解开并竖立在室内。将面板存放在干燥、通风良好的地方非常重要。如果产品不能存放在室内,请抬起捆包的一端,以便在存放期间让水分流出。不要将面板直接接触地面。将面板放在地面上时,请确保在负载下放置某种类型的块。确保整个捆包周围有良好的空气流动,以避免捆包周围积聚水分。面板之间滞留的水分会导致油漆起泡并形成白锈。EPIC Steel 对购买后未立即使用的面板不承担任何责任。
Lifescan下的品牌会创建糖尿病产品。网站包含有关糖尿病基础测试,胰岛素治疗和管理的基本信息。1-800-663-5521 https://www.onetouch.ca/请求免费Onetouchverio®品牌仪表:https://www.onetouch.ca/offers
奖项/表彰: (1) 通过国家级考试:GATE (2007)、CSIR-NET (2012)、GATE (2014、2015)。 (2) 2010 年在 Jadavpur 大学获得理工学硕士学位,荣获一等一(金牌)。出版物:(1) “天然色素花青素和单宁对阿拉伯胶生物聚合物的反应性改性:它们的光学和阻抗研究”,Soumya Mukherjee & Himadri Mullick-材料研究创新,Taylor & Francis 集团,DOI:10.1080/14328917.2021.1987694 (2) “用于植物生物聚合物渗出液反应性改性的果实发色团选择及其紫外可见光研究”,S Mukherjee、H Mullick - 科学教育进展,113,2021 - lincolnrpl.org (3) “黑贾木果皮提取物改性阿拉伯胶生物聚合物适用于通过电荷转移增强实现能源设备应用”,Soumay Mukherjee et.al.-Journal of Macromolecular Science, Part B, Taylor & Francis Group, DOI:10.1080/00222348.2024.2422705 联系方式:物理系,Maulana Azad College, 8, Rafi Ahmed Kidwai Rd, Taltala, Kolkata, West Bengal 700013。电子邮箱:soumya.juphysics@gmail.com 手机:+918777086539
HI5662 是一款双 8 位全差分采样流水线 A/D 转换器,具有数字纠错逻辑。图 14 描述了前端差分输入差分输出采样保持 (S/H) 放大器的电路。开关由内部采样时钟控制,该时钟是来自主采样时钟的非重叠两相信号 1 和 2 。在采样阶段 1 ,输入信号施加到采样电容器 C S 。同时,保持电容器 C H 放电至模拟地。在 1 的下降沿,输入信号在采样电容器的底板上进行采样。在下一个时钟相位 2 中,采样电容器的两个底板连接在一起,保持电容器切换到运算放大器输出节点。然后电荷在 C S 和 C H 之间重新分配,完成一个采样保持周期。前端采样保持输出是模拟输入的全差分采样数据表示。该电路不仅执行采样保持功能,还将单端输入转换为转换器核心的全差分输出。在采样阶段,I/Q IN 引脚仅看到开关的导通电阻和 C S 。这些组件的相对较小的值导致转换器的典型全功率输入带宽为 250MHz。
USB 2.0 高速 (USBHS) 模块 USB 2.0 高速 (USBHS) 模块可作为主机控制器或设备控制器运行。作为主机控制器,USBHS 支持通用串行总线规范 2.0 中定义的高速传输、全速传输和低速传输。作为设备控制器,USBHS 支持通用串行总线规范 2.0 中定义的高速传输和全速传输。USBHS 具有内部 USB 收发器,并支持通用串行总线规范 2.0 中定义的所有传输类型。USBHS 具有用于数据传输的 FIFO 缓冲区,最多可提供 10 个管道。根据外围设备或通信系统,可以为管道 1 至 9 分配任意端点编号。请参阅用户手册中的第 33 节“USB 2.0 高速模块 (USBHS)”。
io_set_cpg :执行 PLL 初始化 WDT.WRITE.WTCSR = 0xa51e; => WDT 停止,WDT 计数时钟设置 => 1/4096 x P 时钟(50MHz;20.97 毫秒) WDT.WRITE.WTCNT = 0x5a85; => 计数器初始设置 10 毫秒 CPG.FRQCR.WORD = 0x0303; => Clockin = 12.5MHz => I 时钟 = 200MHz,B 时钟 = 50MHz => P 时钟 = 50MHz CPG.MCLKCR.BIT.MSDIVS = 1; => MTU2S = 100MHz CPG.ACLKCR.BIT.ASDIVS = 3; => AD = 50MHz STB.CR3.BYTE = 0x02; => 模块待机清除 => HIZ、MTU2S、MTU2、POE2、IIC3、ADC0、保留(1)、FLASH STB.CR4.BYTE = 0xE2; => 模块待机清除 => SCIF3、保留(0)、CMT、保留(1)、EtherC STB.CR5.BYTE = 0x12; => 模块待机清除 => SCI0、SCI1、SCI2、SCI4、ADC1 pfc_init:执行 MTU2 初始化 ADC0.ADCR.BIT.ADCS = 0x0; => AD0 初始化 ADC0.ADANSR.BIT.ANS0 = 0x1; ADC0.ADANSR.BIT.ANS1 = 0x1; ADC0.ADANSR.BIT.ANS2 = 0x1; ADC0.ADANSR.BIT.ANS3 = 0x1; ADC0.ADBYPSCR.BIT.SH = 0x1; ADC1.ADCR.BIT.ADCS = 0x0; => AD1 初始化 ADC1.ADANSR.BIT.ANS0 = 0x1; ADC1.ADANSR.BIT.ANS1 = 0x1; ADC1.ADANSR.BIT.ANS2 = 0x1; ADC1.ADANSR.BIT.ANS3 = 0x1; MTU2S.TSTR.BYTE = 0x0; => 清除 MTU2S 计数器 MTU2S3.TCR.BIT.TPSC = 0x0; => MTU2S3 TCNT 清除禁用 MTU2S3.TCR.BIT.CKEG = 0x0; => MTU2S3 在上升沿计数 MTU2S4.TCR.BIT.TPSC = 0x0; => MTU2S4 TCNT 清除禁用 MTU2S4.TCR.BIT.CKEG = 0x0; => MTU2S4 在上升沿计数 MTU2S.TDDR = 1; => MTU2S 死区时间 MTU2S3.TGRB = 495; MTU2S3.TGRD = 495; MTU2S4.TGRA = 300; => PFC 输出 MTU2S4.TGRC = 300; => PFC 输出 MTU2S4.TGRB = 200; => PFC 输出 MTU2S4.TGRD = 200; => PFC 输出 MTU2S.TCDR = 500; => 三角波形设置 100K MTU2S.TCBR = 500; => 三角波形设置 100K MTU2S3.TGRA = 501; => 三角波形设置 100K MTU2S3.TGRC = 501; => 三角波形设置 100K MTU2S.TOCR1.BIT.PSYE = 0x1; => 切换输出 MTU2S.TOCR1.BIT.TOCS = 0x1; MTU2S.TOCR2.BIT.OLS3N = 0x0; => TIOC4D MTU2S.TOCR2.BIT.OLS3P = 0x1; => TIOC4B MTU2S.TOCR2.BIT.OLS2N = 0x1; => TIOC4C MTU2S.TOCR2.BIT.OLS2P = 0x0; => TIOC4A MTU2S.TOCR2.BIT.OLS1N = 0x0; => TIOC3D MTU2S.TOCR2.BIT.OLS1P = 0x1; => TIOC3B MTU2S3.TMDR.BIT.MD = 0xF; => 峰值时输出高电平 MTU2S.TOER.BIT.OE3B = 0x1; => TIOC3B 引脚输出 MTU2S.TOER.BIT.OE3D = 0x1; => TIOC3D 引脚输出