苯丙烯是由硼原子组成的二维(2D)材料,由于其出色的机械性能,已成为广泛研究的焦点,甚至超过了石墨烯的强度和柔韧性。这些属性在健壮和弹性纳米材料的发展中呈现唯一的关键。此外,它的高电导率和各向异性电子特性在高级电子和储能技术中提供了有希望的机会。其独特的化学反应性为催化中提供了潜在的应用,尤其是在氢储存和燃料电池中。纳米材料的本期特刊旨在展示唯一的基于硼苯和硼基化合物的最新进步,突出显示其合成,性质和多面应用,包括理论和实验方面的进步。通过介绍该领域的主要专家的尖端研究,我们希望吸引高质量的提交,从而有助于本期刊的高影响力和意义,从而在这一令人兴奋的研究领域促进进一步的进步和合作。
食品药品监督管理局(FDA)具有法定责任,以确保与食物接触的包装和生产材料不包含可能损害消费者的有毒化学物质。1 FDA已批准用于食品接触材料(FCM)的九种类型的邻苯二甲酸盐 - 通常在食品制造组件和快餐包装中发现的化学物质,这使塑料更耐用,柔韧性和透明。但有越来越多的证据表明,暴露于邻苯二甲酸盐对人类,尤其是婴儿和儿童的大脑发育极为有害。我们敦促FDA审查这一证据,并使用其现有当局禁止FCM的邻苯二甲酸酯。One way in which the FDA could achieve this goal is by granting the relief requested in the pending objections to FDA's denial of the 2016 food additive petition submitted by Earthjustice and other stakeholders and by reconsidering its denial of the related 2016 citizen petition, which together asked that the FDA revoke food-additive authorizations and prior-sanctioned uses of certain phthalates in FCM.
研究了五苯薄膜在氧化锡(ITO)涂层玻璃上的物理和结构特性。使用20、30和60分钟的沉积时间的热蒸发方法沉积了五苯薄膜。现场发射扫描电子显微镜(FESEM)图像显示,膜厚度随沉积时间的增加而增加,在60分钟时出现了散装相位层。通过五射线衍射(XRD)模式证明了与15.5Å晶格间距相对应的薄膜相位的存在,其沉积时间为20和30分钟。同时,在沉积时间为60分钟,晶格间距为14.5Å,在五苯甲酸膜中验证了散装相的存在。原子力显微镜(AFM)的五苯甲烷膜结晶度的图像显示,沉积在Ito涂层玻璃上的五苯甲烯膜表现出具有模块化晶粒的相似岛屿的形成,从而产生了细晶体结构。从电流 - 电压(I-V)和电流密度 - 电压(J-V)特性中,五苯甲烯薄膜是欧姆的,并且随着五苯苯乙烯的厚度的降低而增加。五苯甲烯膜在透明底物上的宽带和窄带光电设备的发展中显示出潜力。
Except where explicitly agreed otherwise, the sale of products referred to in this publication is subject to the general terms and conditions of sale of Huntsman Advanced Materials LLC or of its affiliated companies including without limitation, Huntsman Advanced Materials (Europe) BVBA, Huntsman Advanced Materials Americas Inc., and Huntsman Advanced Materials (Hong Kong) Ltd. Huntsman Advanced Materials is an international business unit of Huntsman Corporation.Huntsman高级材料通过不同国家的亨斯曼附属公司进行的交易,包括但不限于美国的Huntsman Advanced Material LLC和欧洲的Huntsman Advanced Materade(欧洲)BVBA。
本文档是公认的手稿版本的已发表作品,该作品以环境科学技术和技术的最终形式出现,版权所有©2023 American Chemical Society在同行评审和发行者的技术编辑后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acs.est.2c09816。
共轭聚合物是光催化氢进化的有前途的材料。但是,大多数报道的材料不可溶解材料,从而限制了它们用于大规模应用的潜力,例如作为解决方案铸造膜。通常引入柔性侧链以提供溶解度,但是这些通常具有不利的特性,例如疏水性,从而降低了光催化活性。在这里,采用计算预测来帮助设计氯仿可溶性聚合物光催化剂,这些光催化剂通过有利的分子内相互作用显示了平稳性的增加。使用这种方法,将三个共轭聚合物光催化剂与相同的聚(苯 - 二苯并[b,d]硫苯磺酸硫酮)骨架,但在苯二烯环上的溶解侧链不同,探索了(即乙烯糖基乙烯糖),n -decyl,n-dody,n-ded。这些侧链变化显着改变了聚合物的特性,特定的能级,光学间隙和润湿性。在悬浮液中,疏水N-氧化官能化聚合物的牺牲氢进化速率为17.0μmolH -1,而亲水性TRI(乙二醇)功能化聚合物的活性几乎增加了三倍(45.4μh -h -1)。相反,由于侧链引起的骨架扭转,纯烷基侧链(N-二烷基)纯烷基侧链(N-二烷基)未观察到氢的演化。在可见光光照射下,最活跃的聚合物的薄膜表现出有希望的面积归一化的牺牲氢进化速率,为7.4±0.3 mmol H-1 m-2。
该文件是由美国环境保护署(EPA)的水科学和技术办公室的健康与生态标准部门编写的。该机构非常感谢OW,研发办公室(ORD),儿童健康保护办公室(OCHP)(OCHP)和土地和紧急管理办公室(OLEM)的EPA科学家的宝贵贡献。该文档的作者包括布列塔尼·雅各布斯(Brittany Jacobs);凯西·林德伯格;卡莉·奥斯丁;凯利·坎宁安(Kelly Cunningham);芭芭拉·索尔斯(Barbara Soares);和露丝·埃茨(Ruth Etzel)。该文件的作者包括J. Michael Wright;伊丽莎白·拉德克(Elizabeth Radke); Michael Dzierlenga;托德·祖林登(Todd Zurlinden);杰奎琳·温伯格(Jacqueline Weinberger);托马斯·贝特森;汉古鲁;和凯利·加西亚(Kelly Garcia)。该文档的OCHP作者包括Chris Brinkerhoff;和格雷格·米勒(Greg Miller)(以前是OW)。EPA科学家为OW的文档开发提供了宝贵的贡献,其中包括Czarina Cooper;乔伊斯·多纽(Joyce Donohue)(退休); Adrienne Keel;阿曼达·贾维斯(Amanda Jarvis); James R. Justice;来自ORD包括蒂莫西·巴克利(Timothy Buckley);艾伦·戴维斯(Allen Davis);彼得·埃吉(Peter Egeghy); Elaine Cohen Hubal;帕梅拉·诺伊斯(Pamela Noyes);凯瑟琳·纽豪斯(Kathleen Newhouse); Ingrid Druwe;米歇尔愤怒;克里斯托弗·劳;凯瑟琳·吉本斯;和保罗·施洛瑟(Paul Schlosser);从Olem中包括发电的福斯特。 对经理和其他科学专家的文件审查草案的额外贡献,包括ORD毒性途径工作组和预防化学安全和污染办公室(OSCPP)的专家。EPA科学家为OW的文档开发提供了宝贵的贡献,其中包括Czarina Cooper;乔伊斯·多纽(Joyce Donohue)(退休); Adrienne Keel;阿曼达·贾维斯(Amanda Jarvis); James R. Justice;来自ORD包括蒂莫西·巴克利(Timothy Buckley);艾伦·戴维斯(Allen Davis);彼得·埃吉(Peter Egeghy); Elaine Cohen Hubal;帕梅拉·诺伊斯(Pamela Noyes);凯瑟琳·纽豪斯(Kathleen Newhouse); Ingrid Druwe;米歇尔愤怒;克里斯托弗·劳;凯瑟琳·吉本斯;和保罗·施洛瑟(Paul Schlosser);从Olem中包括发电的福斯特。对经理和其他科学专家的文件审查草案的额外贡献,包括ORD毒性途径工作组和预防化学安全和污染办公室(OSCPP)的专家。该机构非常感谢伊丽莎白·贝尔(Elizabeth Behl)(退休)提供的有价值的管理监督和审查; Colleen Flaherty(OW);杰米·斯特朗(Jamie Strong)(以前是OW;目前的ORD); Susan Euling(OW);克里斯蒂娜·泰耶(Kristina Thayer)(ORD);安德鲁·卡夫(Andrew Kraft)(ORD); Viktor Morozov(ORD); Vicki Soto(ORD);和Garland Waleko(ORD)。
[Cu(no 3)2(4,7-hphen)2](no 3)2(1)和[Cu(cf 3 so 3 So 3)(4,7-Phen)2(H 2 O)2] CF 3 SO 3(2),
抽象苯妥英是一种源自一种称为Hydantoin的有机化合物的抗癫痫药。苯妥英钠是一种抗癫痫药,主要用于治疗癫痫患者的癫痫发作。苯可以通过靶向和阻断神经系统中电压门控钠通道的作用,这有助于减少导致癫痫发作的大脑中异常的电活动。苯妥英钠也可用于治疗三叉神经痛和心室心动过速。苯妥英的吸收取决于给药途径。苯妥英钠的分布受到血浆蛋白结合的影响。苯妥英钠主要由肝酶,尤其是细胞色素P450酶系统代谢。苯妥英钠排泄受尿液中pH的影响。Side effects of phenytoin use that can occur are sedation, fever, sedation, confusion, hallucinations, peripheral neuropathy, Stevens-Johnson syndrome, cardiovascular collapse, hypotension, purple glove syndrome, nystagmus, ataxia, nausea, coma, seizures, vomiting, hyperactivity, lethargy, fetal hydantoin syndrome (FHS)和巨大贫血。苯妥英钠是在苯妥英钠或其他羟托因,孕妇和哺乳期妇女过敏的患者中禁忌的。口服苯妥英,过量会引起神经毒性,而肠胃外苯甲酸苯甲酸过量会导致心血管毒性。 没有特定的解毒剂对苯妥毒素毒性,治疗通常是支持的。 有多种药物可以与苯妥英相互作用以降低或增加苯妥英水平。 关键字:苯妥英钠,临床用途,药代动力学,药效学,毒理学口服苯妥英,过量会引起神经毒性,而肠胃外苯甲酸苯甲酸过量会导致心血管毒性。没有特定的解毒剂对苯妥毒素毒性,治疗通常是支持的。有多种药物可以与苯妥英相互作用以降低或增加苯妥英水平。关键字:苯妥英钠,临床用途,药代动力学,药效学,毒理学