抽象响应紧迫的需求,以减轻由于化石燃料消耗而导致的气候变化影响,因此有一个集体推动向可再生和清洁能源过渡。但是,此举的有效性取决于超过当前锂离子电池技术的有效储能系统。与其他系统相比,具有明显高理论特异性容量的锂氧电池已成为有前途的解决方案。然而,在排出产品形成过程中,较差的阴极电极电导率和缓慢动力学的问题限制了其实际应用。在这项工作中,首先基于原理的密度函数理论用于研究β12-硼苯苯苯甲;作为高性能锂氧气电池的阴极电极材料的电催化特性。计算了β12-硼苯锂的吸附能,电荷密度分布,吉布斯自由能的变化以及超氧化锂(LIO 2)的扩散能屏障。我们的发现揭示了一些重要的见解:发现吸附能为-3.70 eV,这表明LIO 2在放电过程中保持固定在材料上的强烈趋势。LIO 2和β12-硼苯基底物之间的电荷密度分布中的动力学表现出复杂的行为。对吉布斯反应的自由能变化的分析产生的过电势为-1.87 V,该中等值表明在排放产物形成期间自发反应。最有趣的是,状态和频带结构分析的密度表明,在LIO 2吸附后,材料的电导率得到了保留,并提高了材料的电导率。此外,β12-硼苯二苯乙烯的扩散能屏障相对较低,为1.08 eV,这意味着LIO 2的毫不费力地扩散,并且放电过程的速率增加。最终,预测的β12-硼烷的电子特性使其成为有效锂氧气电池的阴极电极材料的强大候选者。
纳米结构在过去四十年中的线性和二维到三维纳米版本不等。8这些纳米结构包括分支的DNA基序,12,20瓦组件,8,21 - 23个折纸结构,24 - 27纳米范围28和动态纳米结构。29,30 DNA纳米技术已成为一种有前途的技术,其优势比传统材料(包括高存储密度,潜在的低能量需求和长期稳定性)具有多种优势。the lyd已经在结构生物学,生物物理学和药物生物学中解决了解决基本科学问题的应用。4这些应用包括组织工程,4,31 - 34个免疫工程,35,36药物输送,37 - 45疾病诊断4,46,47和分子生物学工具或生物传感器。45,47,48 DNA结构与其他生物聚合物和纳米纳米材料相比具有独特的特性。基于DNA的纳米材料的结构允许iveistions cessigity,因为可以将每条线串联或与伸展的臂连接。DNA框架的组装为药物分子提供了一个空心的内部空间,从而实现了有效的药物递送。DNA纳米颗粒具有负电荷,可以通过静电吸引力整合带正电的物质。它们可以用作建筑材料的构建块和治疗剂,例如在自组装的球形核酸中表现出高细胞摄取并执行基因敲低。49
帕金森氏病(PD)是与运动障碍有关的进行性神经系统疾病,大约有2%的65岁以上的人受到这种状况的影响。PD患者壳核和尾状核中的1,2多巴胺(DA)水平降低。 多巴胺能神经元在Nigra pars compacta和细胞质中有选择地降低。 这种疾病的症状包括带有骨核蛋白的路易尸体。 3 - 5虽然PD的确切触发因素尚不清楚,但许多研究表明,除了DA耗竭外,诸如神经肿瘤,蛋白质聚集,神经亲子因素缺乏支持,氧化应激,氧化应激,氧化症状失调,自噬 - 溶液途径的失调的其他因素,以及自噬 - 溶酶体途径的失调,并促进了效果效果效果效果效果效果。 1960年代标志着单胺氧化酶(MAO)抑制剂的引入,但含有3,4-二羟基苯胺(L -DOPA)的小生物分子已用于治疗PD症状壳核和尾状核中的1,2多巴胺(DA)水平降低。多巴胺能神经元在Nigra pars compacta和细胞质中有选择地降低。这种疾病的症状包括带有骨核蛋白的路易尸体。3 - 5虽然PD的确切触发因素尚不清楚,但许多研究表明,除了DA耗竭外,诸如神经肿瘤,蛋白质聚集,神经亲子因素缺乏支持,氧化应激,氧化应激,氧化症状失调,自噬 - 溶液途径的失调的其他因素,以及自噬 - 溶酶体途径的失调,并促进了效果效果效果效果效果效果。1960年代标志着单胺氧化酶(MAO)抑制剂的引入,但含有3,4-二羟基苯胺(L -DOPA)的小生物分子已用于治疗PD症状
图4。在其中性和自由基阳离子状态中,ANL-C2和ANL-C46的DFT优化结构。标记了C-O的长度(在苯环的相邻碳和烷氧基链的第一个氧之间)和O-C(在第一个氧和烷氧基链上的第一碳和第一碳之间)。C,O,F和H原子分别以灰色,红色,绿色和白色显示。
