图4。在其中性和自由基阳离子状态中,ANL-C2和ANL-C46的DFT优化结构。标记了C-O的长度(在苯环的相邻碳和烷氧基链的第一个氧之间)和O-C(在第一个氧和烷氧基链上的第一碳和第一碳之间)。C,O,F和H原子分别以灰色,红色,绿色和白色显示。
抽象响应紧迫的需求,以减轻由于化石燃料消耗而导致的气候变化影响,因此有一个集体推动向可再生和清洁能源过渡。但是,此举的有效性取决于超过当前锂离子电池技术的有效储能系统。与其他系统相比,具有明显高理论特异性容量的锂氧电池已成为有前途的解决方案。然而,在排出产品形成过程中,较差的阴极电极电导率和缓慢动力学的问题限制了其实际应用。在这项工作中,首先基于原理的密度函数理论用于研究β12-硼苯苯苯甲;作为高性能锂氧气电池的阴极电极材料的电催化特性。计算了β12-硼苯锂的吸附能,电荷密度分布,吉布斯自由能的变化以及超氧化锂(LIO 2)的扩散能屏障。我们的发现揭示了一些重要的见解:发现吸附能为-3.70 eV,这表明LIO 2在放电过程中保持固定在材料上的强烈趋势。LIO 2和β12-硼苯基底物之间的电荷密度分布中的动力学表现出复杂的行为。对吉布斯反应的自由能变化的分析产生的过电势为-1.87 V,该中等值表明在排放产物形成期间自发反应。最有趣的是,状态和频带结构分析的密度表明,在LIO 2吸附后,材料的电导率得到了保留,并提高了材料的电导率。此外,β12-硼苯二苯乙烯的扩散能屏障相对较低,为1.08 eV,这意味着LIO 2的毫不费力地扩散,并且放电过程的速率增加。最终,预测的β12-硼烷的电子特性使其成为有效锂氧气电池的阴极电极材料的强大候选者。
具有富含镍的阴极的锂金属电池(LMB)是下一代高能密度电池的有前途的候选者,但是缺乏能力保护性的电极/电解质相互作用(EEIS)限制了其周围性。在此,提出了三氧基苯苯作为局部浓缩离子液体电解质(LCILES)的助理,以增强EEIS。通过对纯离离子液体电解质(ILE)和三个使用纤维苯,三甲基苯基苯或三氧基苯苯的比较研究电导率和功能,以及通过调节1-乙基-3-甲基咪唑醛酸阳离子(EMIM +)和BIS(FuroSulfonyl)酰亚胺阴离子的贡献,EEIS的组成。Trifluoromethoxybenzene, as the optimal cosolvent, leads to a stable cycling of LMBs employing 5 mAh cm − 2 lithium metal anodes (LMAs), 21 mg cm − 2 LiNi 0.8 Co 0.15 Al 0.05 (NCA) cathodes, and 4.2 μ L mAh − 1 electrolytes for 150 cycles with a remarkable capacity retention 71%,这要归功于LMA上富含无机物种的固体电解质相,尤其是富含EMIM +衍生物种的NCA阴极上的均匀阴极/电解质相间。相比之下,在相同条件下的容量保留率分别仅为16%,46%和18%,而基于氟苯和苯并二烯氟化物的LCLE分别为16%,46%和18%。
纳米结构在过去四十年中的线性和二维到三维纳米版本不等。8这些纳米结构包括分支的DNA基序,12,20瓦组件,8,21 - 23个折纸结构,24 - 27纳米范围28和动态纳米结构。29,30 DNA纳米技术已成为一种有前途的技术,其优势比传统材料(包括高存储密度,潜在的低能量需求和长期稳定性)具有多种优势。the lyd已经在结构生物学,生物物理学和药物生物学中解决了解决基本科学问题的应用。4这些应用包括组织工程,4,31 - 34个免疫工程,35,36药物输送,37 - 45疾病诊断4,46,47和分子生物学工具或生物传感器。45,47,48 DNA结构与其他生物聚合物和纳米纳米材料相比具有独特的特性。基于DNA的纳米材料的结构允许iveistions cessigity,因为可以将每条线串联或与伸展的臂连接。DNA框架的组装为药物分子提供了一个空心的内部空间,从而实现了有效的药物递送。DNA纳米颗粒具有负电荷,可以通过静电吸引力整合带正电的物质。它们可以用作建筑材料的构建块和治疗剂,例如在自组装的球形核酸中表现出高细胞摄取并执行基因敲低。49
化合物V228具有以三级亮氨酸为接头的骨架结构。对接结果表明,复合V228可以与M Pro的活性位点结合,它们的相互作用包括七个氢键(His41,ASN142,His164,his164,Glu166,his172和gln189)。与V253相比,将Tert丁基掺入化合物V228中赋予了显着的空间阻滞,从而导致对接结果中有明显的构象。附着在吡啶上的酰胺结构与His41,His164和Gln189表现出氢键相互作用,而另一种与卤代苯苯苯二苯二酰胺结构相关的氢结构与GLU166和ASN142的氢键合作。与上述化合物不同,带有环丙胺结构的V228缺乏原代胺,因此它不能与GLU166形成独特的盐桥相互作用。
摘要:近年来,由于其治疗潜力和多功能性在药物化学中,有机苯苯甲酸盐引起了很大的关注。在这里,我们报告了5-苯基碳酰甲基戊烯基硒酸(SELSA-2)抑制的机制,这是特征良好的组蛋白脱乙酰基酶抑制剂suberoylanilide suberoylanilide hydroxamic的类似物(Sahavorinostat)。我们表明,组蛋白脱乙酰基酶6和10可以促进硒氰酸酯水解产生硒酸盐阴离子,并且我们通过可逆形成二苯胺来调节抑制活性,探索硒的氧化还原化学。组蛋白脱乙酰基酶6的2.15Å分辨率晶体结构与SELSA-2结合结构,最终证明它不是硒氰酸酯,而是硒酸盐阴离子,这是负责酶抑制的活性药理。
2004年石墨烯的突破,当时它是第一个同样的,揭示了2D材料的独特特性,并推动了2D材料研究的增长。这导致发现了许多新型的单层材料,例如苯苯丙烯,过渡金属二核苷(TMDS)和六核氮化物。这些材料由于其对电子应用的有希望的特性而引起了科学界社区中的巨大兴趣。tmds由于其多功能性和可调性,在包括催化,储能和光电子的各种应用中被证明具有吸引力。1尽管在许多情况下2D材料与其大容量相比具有增强的性质,但是有不足的方法可以控制纳米级结构,使2D材料的大规模可重复性差异很大,从而阻碍了它们进入我们的日常生活。2
Tetrayne前体3A-C通过2倍铃木交叉偶联(2倍)与市售的1A-C(方案1)获得了良好的收率(72-76%)。17个四倍的氯化苯苯二苯甲酸是通过使用含有3和AGNTF 2处理的Tetrayne前体来实现的,并且所得的二皮肾上腺粒纳米仪4A-B以76%和81%的良好产率获得了4A-B。18,19这些化合物的计算结构在主链中表现出扭曲。然而,人们认为对映异构化的障碍是如此之低,以至于使化合物具有易感性。纳米摄影4C。存在羰基矫正物和para到苯量反应位点从这些位置中撤出电子密度,使它们过于反应,无法完全苯并式发生,并导致产物的复杂混合物。
多环芳烃(PAHS)的化学合成由Scholl 11-13和CLAR 14-16率先开创,并在整个20世纪进一步发展,正如我们先前的评论文章所总的总结。9,特别是在高效合成六边形 - 己糖甲苯烯(P -HBC,2)之后,通过氧化性分子内环氢化物的六磷酸化苯基苯苯(1)(图。1),通过使用量身定制的寡苯基作为原始物质,获得了多种pahs的PAH。9这样的PAH,由SP 2碳框架组成,延伸到1 nm以上,可以被视为最小的纳米属或石墨烯分子。10,17在过去十年中,扩展的PAH因此吸引了新的合成兴趣,并且作为结构定义良好的石墨烯分子,在未来的应用中具有很大潜力,例如在纳米电子,光电子四元素和菠菜中,具有很大的潜力。18–23