在2023年2月10日的第8届巴厘岛流程部长级会议上,召回并重申了在2016年和2018年的部长宣言和联合主席声明中提出的原则和方向,并认识到2018年合作策略的持久优先级,以及合作的新优先事项,以及合作的新优先级,对20223 ADELAIDE策略的更新范围进行了重新设计,以重新设计与合作的策略,并巩固了合作的策略,并与之合作,并与之合作,并与之合作,并与之合作,并与合作的策略相关联,并与之相关。自建立以来的巴厘岛进程超过20年。
在人口增长和气候变化的背景下,消费量增加和农作物产量下降威胁着粮食安全。为了减轻这些威胁,可以采用植物基因工程来创造产量和营养价值更高、能够抵抗疾病和干旱等生物和非生物胁迫的作物。尽管基因组编辑领域最近取得了进展,但大多数植物物种仍然难以进行基因工程,因为植物细胞壁坚硬,尺寸排阻严格,这对生物分子向植物细胞的有效运输提出了挑战。目前将 DNA 输送到植物中的常用方法限制了可转化植物物种的范围,导致转基因整合不受控制,因此需要对编辑植物进行监管审查,将其视为转基因生物 (GMO),这个过程漫长而昂贵。因此,开发一种无致病性、非整合性、物种独立的输送工具将极大地推动农业生物技术的发展。在本次研讨会上,我将介绍一种纳米材料平台的开发,该平台可以高效地将基因输送到模型和农业相关作物植物中,无需机械辅助,以无毒、无整合的方式;这些特性的组合是现有植物转化方法无法实现的。我将讨论如何对单壁碳纳米管进行化学修饰,以装载和递送 DNA 到植物细胞中,从而在烟草、芝麻菜、小麦和棉花等各种植物物种中表达功能性蛋白质。在成熟植物中实现了质粒 DNA 的有效递送和瞬时表达,特别是没有将转基因整合到植物基因组中,这一特性可以减轻对转基因植物的监管监督。本次研讨会还阐明了纳米粒子穿过植物细胞壁的基本原理。我将讨论纳米粒子的物理化学特性(大小、形状、纵横比和硬度)对植物细胞吸收的影响,我们利用 DNA 纳米结构的易编程性系统地研究了这些影响。重要的是,确定最大植物细胞吸收的最佳纳米材料参数可以合理设计纳米材料。这些发展展示了纳米材料在解决植物基因工程的主要瓶颈方面的独特能力,以实现可持续的粮食安全未来。
第1阶段的重点是对大阿德莱德地区计划讨论文件的出版,吸收和理解(讨论文件)。讨论文件概述了委员会在2050年及以后建立对大阿德莱德的愿景时的关键领域。它包含重要的预测,趋势和增长分析,在计划该地区的未来时必须考虑。这是一份强大的基于证据的文件,启发了与所有利益相关者以及投资塑造大阿德莱德未来的对话。
摘要 本文介绍了一种非平衡马赫-曾德干涉仪 (MZI) 固有的干涉特性,该干涉仪通过精密制造技术在绝缘体上硅平台上实现。研究深入探讨了自由光谱范围 (FSR) 与非平衡 MZI 各种长度之间的复杂关系。值得注意的是,模拟结果与实验结果的比较显示出了惊人的一致性。 关键词:马赫-曾德干涉仪、光子学、绝缘体上硅、波导 1. 简介 硅光子器件因其吸引人的特性而越来越受欢迎。小尺寸、大折射率对比度和 CMOS 兼容性是硅光子器件的特性之一,这些特性使其成为电信、生物医学等多个行业的首选器件[1]。马赫-曾德干涉仪 (MZI) 是最广泛使用的硅光子器件组件之一。在硅平台上实现的马赫-曾德尔干涉仪是各种应用的关键元件,从电信(用于光子波导开关和光子调制器)到传感和信号处理 [2]、[3]、[4]。MZI 的实用性源于其干涉特性,这是通过在 MZI 的两个臂之间产生相对相移来实现的。这种相移可以通过使用移相器或使 MZI 的两个臂的光路长度不相等来实现。MZI 的两个臂不相等的 MZI 配置称为不平衡 MZI。在本文中,我们展示了一种不平衡 MZI 设计,我们对其进行了建模、模拟和随后的制造。我们研究了几种不平衡 MZI 设计,并分析了这些设备的模拟和实验传输特性。我们阐明了波导建模的过程,并进行了分析以补偿制造变化,并详细介绍了一些数据分析。 2. 材料与方法 2.1 理论 马赫-曾德干涉仪 (MZI) 包括一个分束器和一个光束组合器,它们通过一对波导相互连接,如图 1 所示。MZI 配置包括分束器将波导输入端 (E i ) 的入射光分成波导的臂或分支。随后,光在输出端重新组合成光束
a 美国田纳西州纳什维尔范德堡大学范德堡脑研究所 b 美国田纳西州纳什维尔 Curb 艺术、企业与公共政策中心 c 意大利都灵大学神经科学系 d 美国田纳西州纳什维尔范德堡大学医学中心耳鼻咽喉头颈外科系 e 美国纽约州纽约市长老会/哥伦比亚大学欧文医学中心和哥伦比亚大学瓦格洛斯内外科医学院耳鼻咽喉头颈外科系 f 美国纽约州纽约市长老会/威尔康奈尔医学中心耳鼻咽喉头颈外科系 g 荷兰马斯特里赫特大学神经心理学与精神药理学系 h 德国莱比锡马克斯普朗克人类认知与脑科学研究所神经心理学系 i听力和语言科学系,范德堡大学医学中心,田纳西州纳什维尔,美国 * 通讯作者,电子邮件:anna.v.kasdan@vanderbilt.edu 摘要 我们对 30 项研究神经典型成人音乐节奏处理的功能性磁共振成像研究进行了系统回顾和荟萃分析。首先,我们确定了一个音乐节奏的一般网络,涵盖所有相关的感觉和运动过程(基于节拍,静息基线,12 个对比),这揭示了一个涉及听觉和运动区域的大型网络。这个网络包括双侧颞上皮质、辅助运动区 (SMA)、壳核和小脑。其次,我们在双侧壳核中确定了更精确的基于节拍的音乐节奏位置(基于节拍,音频运动控制,8 个对比)。第三,我们确定了受基于节拍的节奏复杂性调节的区域(复杂性,16
1儿科,美国密苏里州堪萨斯城儿童慈悲城市; 2美国田纳西州纳什维尔范德比尔特大学医学中心儿科学系; 3美国纳什维尔范德比尔特大学医学中心医学系; 4贝勒医学院传染病科儿科学系和美国德克萨斯州休斯敦的德克萨斯儿童医院; 5美国宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院儿科学系,美国宾夕法尼亚州,美国; 6全国儿童医院和美国俄亥俄州立大学的传染病和宿主国防部儿科系,美国俄亥俄州哥伦布; 7加利福尼亚大学旧金山分校和贝尼奥夫儿童医院儿科 - 美国加利福尼亚州旧金山旧金山; 8美国田纳西州孟菲斯的圣裘德儿童研究医院儿童传染病系; 9辛辛那提大学医学院儿科,辛辛那提儿童医院医疗中心,美国俄亥俄州辛辛那提; 10传染病系,密苏里大学堪萨斯城,堪萨斯城,美国密苏里州; 11儿科,华盛顿大学和西雅图儿童研究所,美国华盛顿州西雅图; 12分子病毒学和微生物学系,美国德克萨斯州休斯敦贝勒医学院;和13美国纳什维尔范德比尔特大学医学中心生物统计学系
1儿科,美国密苏里州堪萨斯城儿童慈悲城市; 2美国田纳西州纳什维尔范德比尔特大学医学中心儿科学系; 3美国纳什维尔范德比尔特大学医学中心医学系; 4贝勒医学院传染病科儿科学系和美国德克萨斯州休斯敦的德克萨斯儿童医院; 5美国宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院儿科学系,美国宾夕法尼亚州,美国; 6全国儿童医院和美国俄亥俄州立大学的传染病和宿主国防部儿科系,美国俄亥俄州哥伦布; 7加利福尼亚大学旧金山分校和贝尼奥夫儿童医院儿科 - 美国加利福尼亚州旧金山旧金山; 8美国田纳西州孟菲斯的圣裘德儿童研究医院儿童传染病系; 9辛辛那提大学医学院儿科,辛辛那提儿童医院医疗中心,美国俄亥俄州辛辛那提; 10传染病系,密苏里大学堪萨斯城,堪萨斯城,美国密苏里州; 11儿科,华盛顿大学和西雅图儿童研究所,美国华盛顿州西雅图; 12分子病毒学和微生物学系,美国德克萨斯州休斯敦贝勒医学院;和13美国纳什维尔范德比尔特大学医学中心生物统计学系
Heather获得了范德比尔特大学的心理学理学学士学位,医疗保健管理硕士学位和伯明翰阿拉巴马大学的工商管理硕士学位。 她完成了哈佛商学院医疗保健服务的密集管理课程,是伍德拉夫领导力学院的院士,也是美国医疗保健学院主管的研究员。 Heather目前是Pace Academy和Cristo Rey Atlanta的董事会成员,并且是美国医院协会地区政策委员会的成员。Heather获得了范德比尔特大学的心理学理学学士学位,医疗保健管理硕士学位和伯明翰阿拉巴马大学的工商管理硕士学位。她完成了哈佛商学院医疗保健服务的密集管理课程,是伍德拉夫领导力学院的院士,也是美国医疗保健学院主管的研究员。Heather目前是Pace Academy和Cristo Rey Atlanta的董事会成员,并且是美国医院协会地区政策委员会的成员。