目的:拟议项目的目的是提高项目现场的灌溉和农业效率。位置:项目现场位于阿肯色州克雷格黑德县第 22 区、15N 乡镇、2E 范围,在 Bono 7.5 分钟四边形地图上大约位于纬度 35.92143° 和经度 -90.85728°(图 1)。工作描述:申请人提议填充和重新安置一条未命名支流的约 2400 线性英尺。将在现场创建一条总长约 2200 线性英尺的新渠道以取代现有支流(图 2)。现有支流的填充物将来自新渠道和周围农田的挖掘。避免/最小化:据申请人称,避开现有支流无法实现改善该地点灌溉和农业效率的目的。缓解:申请人提议通过开辟一条总长约 2200 线性英尺的新水道,将影响减轻到约 2400 线性英尺的支流。申请人提议在新水道两侧设置 20 英尺的草本缓冲区。水质认证:《清洁水法》(CWA)第 401 条水认证改进规则(认证规则,40 CFR 121)于 2023 年 11 月 27 日生效,要求对授权可能导致排放的活动的任何执照或许可证进行认证。认证机构对 CWA 第 401 条的认证范围应评估该活动是否符合适用的水质要求。认证机构的评估仅限于受联邦许可或许可证约束的活动对水质的影响,包括活动的建设和运营。申请人全权负责申请认证并向认证机构提供所需信息。根据认证规则第 121.12 部分,工程兵团在收到 DA 许可申请和相关认证后将通知美国环境保护署署长。
首席执行官前言 我非常荣幸地推出《契约登记处数字化战略:保存、保护和促进访问 2023-2025》。 财产登记局 (PRA) 是一个在保护产权方面有着悠久历史的组织。除了保护数字登记册上的所有权外,PRA 还负责保存和保存契约登记处的重要记录,以及访问这些记录的权限,这些记录可追溯到 1708 年。契约登记处是爱尔兰 18 世纪和 19 世纪原始资料的最大单一集合,未受到其他爱尔兰记录遭受的灾难的破坏,目前作为历史资料的利用率较低。 这项新的滚动战略确定了四个主要目标和相关行动,这些目标和行动将使我们能够在未来三年内发展我们的数字化能力和产出。该战略范围雄心勃勃,但经过精心设计,确保目标可实现且务实。作为这些数据的管理者,我们战略的一个关键目标是专注于数字化和档案管理的最佳实践。我们将通过制定强大的数字保存政策和程序来保护对数字化的任何投资。我们还认识到合作的价值,并将利用合作伙伴的知识和专长来开发和交付创新且有影响力的数字化项目。该战略的核心是提高我们数字化记录的可访问性和可发现性的目标,确保我们的数字化计划满足用户和利益相关者的需求。对于 PRA 来说,这是一个非常激动人心的时刻,特别是在该战略的实施期间,我们将与爱尔兰地形测量局和估价办公室合并为一个名为 Tailte Éireann 的新机构。这个新的国家实体将整合该州的土地和财产信息服务,包括注册、估价和测量服务。成为新集中组织的一部分将促进与我们的合并伙伴在档案和记录领域的信息和知识交流。这将创造新的机会,让我们与爱尔兰税务局的同事们合作,充分利用我们档案的文化遗产潜力。我要向参与起草本战略的所有人表示感谢,特别是契约登记处数字化战略咨询小组的成员和我们的概念验证项目合作伙伴。在我们制定这一战略的过程中,这些个人和组织慷慨地与我们分享了他们的知识和专长。最后,我要感谢契约登记处档案服务部门和整个 PRA 的工作人员。我们拥有一支创新和反应迅速的员工队伍,我期待着在未来三年内共同努力实现本战略中提出的主要目标和目的。
罕见病创新中心使命 FDA 创建了罕见病创新中心 (Hub),作为生物制品评估与研究中心 (CBER) 和药品评估与研究中心 (CDER) 之间的合作和连接点,旨在改善罕见病患者的治疗效果。该中心将加强 FDA 内部的合作,以解决与罕见病产品开发相关的常见科学、临床和政策问题,包括与产品审查相关的跨学科方法,并促进各办公室和中心之间的一致性。尽管该中心将适用于所有罕见病,但它将特别关注较小人群中的挑战或自然病史多变且尚未完全了解的疾病。 罕见病创新中心成立 罕见病创新中心启动 该中心成立于 2024 年,旨在促进 FDA 内部的合作,并推进共同愿景和全面方法,以应对共同挑战,例如确定和利用创新的科学方法进行药物开发,并简化与罕见病社区的沟通。该中心由 CBER 和 CDER 主任领导。他们担任罕见病创新中心指导委员会的联合主席,该委员会还包括中心和 FDA 其他办公室的相关领导,包括设备和放射健康中心(CDRH)、肿瘤卓越中心(OCE)、孤儿药产品开发办公室(OOPD)和组合产品办公室(OCP)。该中心的战略运营由战略联盟主任(DSC)领导,他对两位中心主任负责。该中心启动的第一阶段是听取罕见病社区的意见。里根-乌达尔基金会与 FDA 合作举办了一次公开会议,讨论该中心并听取社区对中心优先事项的反馈。公开会议还包括开设一份联邦公报卷宗,以接收有关该中心使命和功能的书面意见。就该中心的必要性和预期目的向 FDA 提供的反馈表明了对 FDA 这一新计划的大力支持;公开会议的注册人数超过 3000 人 1,通过《联邦公报》档案提交了 60 多条深入评论。2 此外,注册和反馈代表了罕见病社区的广泛横截面,其中 40% 的公开会议注册来自受监管行业,超过一半的公开档案评论来自患者和疾病组织。有关罕见病社区意见的更多详细信息,请参阅下面的社区意见部分。中心启动的第二阶段是起草本战略议程。基于已经收到的反馈,并考虑到中心尚处于起步阶段,CBER 和 CDER 领导层
联合国可持续发展目标 (SDG) 包括提供负担得起的清洁能源(目标 7),以实现全民和平与繁荣(可持续发展目标,2022 年)。其他可持续发展目标“可持续城市和社区”(目标 11)、“负责任的消费和生产”(目标 12)和“气候行动”(目标 13)也要求寻找可持续原料和清洁技术来生产可再生燃料。木质纤维素生物质是被研究作为生物燃料生产来源的突出和新兴原料之一。自然界中木质纤维素生物质的全球年产量估计为 1815 亿吨。其中,据说目前仅利用了 82 亿吨生物质,其中 70 亿吨来自森林、农业和草类,12 亿吨来自农业残留物(Ashokkumar 等人,2022 年)。这种生物质的传统用途是烹饪、取暖、建筑材料以及纸张、纸板和纺织品的生产。随着技术和生物质管理的进步,这种有价值的木质纤维素生物质可用于生产可再生生物燃料。此外,纤维素、半纤维素和木质素材料可以用于其他有用的工业生物产品和生物化学品(Ashokkumar 等人,2022 年)。木质纤维素生物质由木质素、纤维素和半纤维素组成,全球储量丰富。纤维素是自然界中最丰富的有机物质,其次是木质素。纤维素、半纤维素和木质素的百分比组成在软木、硬木、农业残留物和草类等木质纤维素材料中有所不同。木质纤维素生物质来自各种原料,如糖料作物、淀粉作物、农业残留物、草本生物质、木质生物质、油籽和微藻 ( Yuan et al., 2018 )。木质纤维素生物质的纤维素和半纤维素成分中存在的碳水化合物被认为适合生产生物燃料。然而,木质纤维素材料难以转化,因为木质纤维素生物质中的木质素会抑制生物质中碳水化合物的糖化和水解,从而给生物燃料转化带来挑战。将木质纤维素生物质中的聚合物转化为单体的主要挑战在于其结构中的强共价键和非共价键、结晶度和木质素结垢,需要克服这些才能将其用作生物燃料生产材料(Preethi 等人,2021 年)。木质纤维素材料的顽固性可以通过预处理步骤来克服,这些步骤会扰乱生物质中的木质素成分。此后,可以对纤维素和半纤维素进行酶水解。预处理方法可以是物理的、化学的、物理化学的或生物的。预处理导致木质纤维素材料碎裂,进一步增加其表面积和溶解度,并降低生物质中纤维素和木质素含量的结晶度(Hoang 等人,2021 年;Kumar 等人,2022 年)。原料选择、原料混合、高效预处理
金盏花花提取物评论 Sejal Ghadge [1]、Ketan Gomase [2]、Rajlaxmi Mohite [3]、Renuka Mahajan Nagpur 药学院、巴巴萨海布安贝德卡尔科技大学 Raigad 电子邮件:- ghadgesejal27@gmail.com 摘要 金盏花是一种短命的芳香草本多年生植物。根据科学文献,金盏花还能促进伤口愈合。虽然它确切的作用方式尚不清楚,但人们认为这种草药会增加伤口区域的血流量,从而提供组织再生所需的氧气和营养。本评论的目的是了解和探索相关的植物化学和药理学信息,以增强其有效的伤口愈合机制。数据是通过 PubMed、Google Scholar、Scopus 以及通过英语文献搜索获得的近期和旧文章的书目评论来识别的。在对已识别文章的共同作者进行独立分析后,对数据进行了分析并提取,以达到所述目的。金盏花含有大量的黄酮类化合物,有助于减少炎症并加快愈合过程。金盏花的其他用途是可以作为镇静软膏、洗液或酊剂,因为它可以帮助缓解伤口刺激并减少肿胀和炎症。伤口愈合是一个复杂的过程,金盏花历来用于治疗轻微伤口、皮肤刺激和轻微烧伤。在推荐常规使用之前,需要来自大型比较临床试验的数据。药剂师和临床医生可以有效地回答患者关于伤口护理和草药疗法的问题,以帮助促进伤口护理实践,促进伤口愈合并尽量减少感染或疤痕等不良后果。关键词:金盏花,伤口愈合,组织再生。介绍皮肤的主要功能是保护身体免受侵入性元素和微生物的侵害,调节体温,并允许触觉、冷和热。各种因素都会对皮肤造成损害,包括紫外线 (UV) 辐射、脱水、细菌等微生物的入侵、机械创伤和身体伤害。由于其对皮肤和健康的负面影响,用于化妆品或皮肤护理的化学产品引起了人们的关注。此外,产品中的一些化学添加剂可能会引起皮肤刺激,甚至过敏反应,这可能是有害的,因为用于皮肤漂白的一些制剂可能含有类固醇。最近,草药或药用植物已成为护肤产品的来源。草药提取物具有更强的抗氧化活性,可保持皮肤健康,而不是衰老。草药提取物在护肤方面的最大优势在于它们的天然成分,如 omega-3、维生素、以及芹菜素和槲皮素等黄酮类化合物。此外,植物部分提取物还含有维生素 E 等天然营养素,可保持皮肤健康。它被认为是最重要的药用植物之一。万寿菊的活性属于黄酮类化合物等活性化合物,这些化合物被认为是自由基清除剂和抗氧化剂。本研究的目的包括收集植物花、提取和检测活性化合物,并评估其作为皮肤营养剂的临床活性。[1]
韩国自然农法 (KNF) 是由 Hankyu Cho 创立的一种环保型农耕方式。它利用被称为本土微生物和营养循环的良好天然助手帮助植物和动物茁壮成长。KNF 采用了日本和韩国的古老农耕技术,并使其安全使用,而不是使用可能危害人类和环境的有害化学物质。KNF 希望帮助农民找到一种更好的种植粮食的方法,而不会伤害自然。Cho 先生之所以开始使用这种方法,是因为他想停止在韩国农业中使用刺激性化学物质。他相信大自然可以为种植健康的动植物提供所有答案。KNF 的核心基于营养循环理论,该理论有助于在植物生长的不同阶段选择正确的事物。这样,农民就可以在不花费太多金钱或精力的情况下从小面积获得良好的结果。他们还保护甚至改善了周围的环境。土壤管理在 KNF 中非常重要。农民应该给土壤施肥,土壤会照顾植物。KNF 教导如何利用堆肥、草皮覆盖物和微生物使土壤健康。草皮覆盖物可保护土壤免受侵蚀,保持水分,并为蚯蚓、有益昆虫和微生物提供良好的栖息地。这些微生物助手(本土微生物)可分解有机物质、抵抗疾病并为植物提供营养。然而,如果它们的平衡被破坏,土壤健康就会下降,植物就会变得虚弱,疾病就会发生。KNF 试图通过收集、培养和将不同的微生物引入土壤来保持这种平衡。这些微生物是 KNF 系统的基础。它们帮助农民利用当地原料进行农业投入。一些例子包括发酵植物汁 (FPJ),它由发酵植物材料制成,其中富含微生物、酶和有益于植物生长的营养物质。FPJ 使用健康的植物样本来确保发酵物具有所有必要的特性。促进植物健康。KNF 的 FPJ 可帮助幼苗适应温度变化,同时促进植被生长。它还可以作为害虫引诱剂,单独使用或与其他解决方案结合使用。发酵植物汁在室温下可保持有效长达 30 天,冷藏下可保持有效长达一年。东方草本营养素 (OHN) 是一种天然发酵植物刺激剂,源自草本和香料,经证实可促进植物生长并改善其健康。OHN 结合了肉桂、大蒜和生姜等成分,具有抗菌、杀真菌和抗生素特性,这些特性可通过发酵保留下来。它与其他天然农业投入品(如 IMO-3 和 IMO-4)混合,可处理土壤和种子。作为植物滋补品,OHN 可有效解决植物的根腐病和全身虚弱问题。OHN 需要一些时间来发酵,但可以在 45 天内过滤并使用。为了更快地提取和长期储存,它需要酒精。乳酸菌(Lactobacillus)简称 LAB 是一种厌氧微生物,可将糖转化为乳酸,在卷心菜等植物表面繁衍生息。LAB 与 FPJ 混合可帮助牲畜消化或加速堆肥。在 KNF 中,LAB 通常使用洗米淀粉作为食物来源在牛奶中培养。与 IMO 结合,它可以软化土壤并松动压实,为蓬松、通气良好的土壤创造小通道。LAB 溶液应远离阳光直射,最好冷藏,但与红糖混合后可在室温下保存更长时间。水溶性钙 (WS-Ca) 是一种由蛋壳与醋反应而获得的钙溶液。钙在环境中很常见,有些植物可能难以正确使用它,导致过度生长、生长虚弱或果实脆弱。WS-Ca 为植物提供了一种易于吸收的钙,帮助它们利用其他营养物质并发育出强壮的细胞。它可在 3-10 天内使用,并可无限期地存放在阴凉黑暗的地方。KNF 依靠观察害虫的行为来防止侵扰。理想情况下,多样化的健康植物会阻止或完全混淆害虫。然而,大多数害虫更喜欢特定的植物,因此 KNF 使用芳香昆虫引诱剂 (AIA) 将有害昆虫引诱出耕地。AIA 是 FPJ、FFJ 和白兰地等酒精的混合物,旨在将昆虫吸引到溶液中,防止它们在田间产卵。韩国自然农业强调人道的家禽生产,专注于饲养快乐、健康的鸟类的最佳环境,非常重视鼓励自然通风、加热和卫生的家禽舍的设计。这让鸡能够表现出它们的自然倾向,同时最大限度地减少农民的劳动需求。KNF 的一个核心原则是让鸡直接接触土壤,正如 Cho 先生所倡导的那样,他认为这有助于保持鸟类的健康。但是,在需要混凝土地板的地方也做出了安排。鸡粪的发酵、分解和消毒由土著微生物 (IMO) 协助,因此除非需要用作堆肥,否则鸡粪会留在鸡舍中。Cho 先生设计的系统可以满足鸡的需求,而无需人工加热、使用刺激性化学物质或可疑药物。自推出以来,韩国自然农法一直是有机农业方法的巅峰,激发了 JADAM 有机农业等其他系统的发展。虽然 Jadam 和 KNF 方法有着相似的理想,但它们之间也存在差异,最初 KNF 更复杂,但随着反复实践会变得更容易。营养循环理论旨在通过了解动物和植物在不同生长阶段需要不同的营养,为获得最佳效果提供充足的营养。本土微生物肥料是指在微生物存在下通过分解有机物质而产生的农业投入,与 JADAM 液体肥料的关系比 KNF 更密切。赵大师的工作重点是从自己的废弃物中创造农业投入。这包括使用杂草、野生植物、蛋壳等来制造堆肥、肥料和其他必要的营养物质。他的方法旨在利用发酵植物汁 (FPJ) 和水溶性钙 (WCA) 等技术将农场废弃物回收利用为可用的生物。这些过程产生了用于植物生长的强大工具,例如益生菌溶液和水溶性钙。其他投入包括来自鱼类副产品的鱼氨基酸 (FAA) 和 JADAM 润湿剂 (JWA),赵大师的著作《橙皮书》和《绿皮书》中对此进行了讨论。KNF 通过给予和接受的原则强调农业中的共生关系,促进土壤、植物、昆虫、动物和人类之间的互惠关系。通过关注循环能量流并尽量减少外部投入,KNF 减少了对昂贵投入的外部依赖,从而促进了可持续发展。
位置 大马尼斯蒂克湖面积为 10,346 英亩(Breck 2004),位于密歇根州上半岛卢斯县和麦基诺县边界的马尼斯蒂克河流域(乡镇 44 和 45 N,范围 11 和 12 W)(图 1)。在卢斯县,赫尔默(莱克菲尔德乡镇)位于大马尼斯蒂克湖的东北岸。在麦基诺县,柯蒂斯(波蒂奇乡镇)位于大马尼斯蒂克湖的东南偏南,毗邻南马尼斯蒂克湖北岸。大马尼斯蒂克湖是马尼斯蒂克湖中最大的一个,也是密歇根州第七大内陆湖(Laarman 1976),平均深度为 10 英尺,最大深度为 23 英尺。地质和地理 大马尼斯蒂克湖位于马尼斯蒂克基岩地质构造内,该构造由一条薄薄的白云岩和石灰岩带组成,横跨三角洲县和麦基诺县 (MDNR 2001)。该地区的岩石类型主要是沉积岩,为大马尼斯蒂克湖的亲石产卵鱼类(如大眼鲷)提供了丰富的栖息地。大马尼斯蒂克湖周围的地表地貌主要由冰碛(45.6%)和湖泊/沙丘(16.6%)组成。细小的“沙丘”基质(如沙子)会填充正在发育的鱼卵和胚胎占据的间隙,从而对大马尼斯蒂克湖近岸产卵栖息地造成危害。大马尼斯蒂克湖附近的土地覆盖类型包括森林(40.7%)、湿地(37.0%)、水域(11.6%)、农业(4.8%)、城市(3.8%)、草地/灌木(1.8%)和荒地(0.3%)(图 2)。该地区的地表地质由大量粗糙(62.2%)的纹理材料以及无纹理的有机材料(37.8%)组成。粗糙纹理材料遍布整个湖泊,有助于提供近岸产卵栖息地。粗糙纹理材料还促进了湖泊较深区域的冷地下水交换,冷水物种和冷水物种(例如,分别是 Walleye 和 Cisco)都生活在那里。其余的湖岸由无纹理材料(沙子和有机材料)组成,地下水渗透性低到中等(Madison 和 Lockwood 2004)。大马尼斯蒂克湖周围的土壤类型以草本有机物和沙壤土冰川沉积物为主(USDA 2024)。岛屿群大马尼斯蒂克湖共有四个岛屿,包括福斯特岛、格林菲尔德岛、古尔岛和伯恩特岛,面积分别约为 8、2、1 和 1 英亩。其中一个岛屿(即格林菲尔德岛)已基本开发,其余三个则处于自然状态。流域描述大马尼斯蒂克湖北部的赫尔默溪和南部的波特奇溪水源(图 1)。赫尔默溪从北马尼斯蒂克湖向西南流入大马尼斯蒂克湖。位于赫尔默溪上的特雷斯勒大坝限制了湖泊之间上游鱼类的通道。波蒂奇溪从南马尼斯蒂克湖向东北流入大马尼斯蒂克湖,并设有水位控制
Ashmika Nagsen Shailaja Kamble 和 Akshata Arun Mitkar DOI:https://dx.doi.org/10.22271/phyto.2023.v12.i5d.14745 摘要 植物的使用可以补充当代制药技术,从而导致全球对传统药用植物的分析增加。随着计算机科学的进步,网络分析和筛选等计算机模拟方法已被广泛用于深入了解这些植物的药理作用机制。通过实施网络药理学、计算机模拟筛选和药代动力学筛选,可以增加候选药物中的活性物质数量,并揭示治疗植物的作用方式。本研究重点是利用瑞士 ADME 计算机模拟 ADME 工具对胡芦巴中存在的次级代谢产物进行药理学和药物遗传学表征。研究人员可利用这些研究的结果进行体外和体内研究,从而揭示传统草药的药理作用机制。关键词:药用植物,葫芦巴(Trigonella foenum-graecum),次生代谢产物,药理特性,瑞士 ADME 1. 简介古代文明拥有关于利用药用植物作为草药的广泛知识。在欠发达国家,超过 80% 的人口依赖传统医药,草药是维持生计、居住、穿衣、调味、芳香和药用的重要资源(Divya 和 Mini,2011;Manoj Kumar Mishra,2016;Gurib-Fakim,2006;和 Brijesh 和 Madhusudan,2015)[12, 31, 20, 3]。药用植物药物研发的探索取得了重大进展,并为各种药理学目标提供了重要见解,包括治疗癌症、疟疾、心血管疾病、糖尿病和神经系统疾病等疾病。古印度医学体系阿育吠陀推荐使用多种药用植物来治疗各种疾病。胡芦巴就是这样一种植物,在印地语中通常称为葫芦巴或 methi,因其药用价值而被利用。葫芦巴是一种豆科草本半干旱作物,属于豆科植物,以生产复杂的化学化合物而闻名。植物次生代谢产物是一组分子量较低的有机化合物,由植物合成,以促进与生物环境的相互作用并作为防御机制。这些次生代谢产物已显示出良好的治疗价值,并广泛应用于医疗实践。胡芦巴的具体用途已在多项研究中得到记录。这些特性包括其抗氧化活性(Dixit P 等人,2005 年)[13]、抗糖尿病活性(Shani J 等人,1974 年)[39]、抗癌特性(Kaviarasan S,Anuradha CV,2007) [25]、降低胆固醇作用 (Stark A, Madar Z,1993) [41]、抗菌活性 (Dash BK et al., 2011) [9]、改善消化 (Platel K, Srinivasan K, 2000)、保护胃肠道 (Platel K, Srinivasan K, 2000) [37]、治疗肥胖症 (Handa T et al., 2005) [21]、抗炎作用 (Sharififara F. et al.,2009) [40] 和抗高血压作用 (Talpur N. et al.,2005) [42]。通过建立快速便捷的化学成分预测途径并进行体内和体外药理学实验进行验证,可以显著提高评估药用植物化学活性的有效性 (Yi F et al ., 2016) [48] 。瑞士 ADME 网站是一个有价值的工具,它有助于计算物理化学描述符并预测小分子的 ADME 参数、药代动力学特性、类药性质和药物化学友好性。在本研究中,我们的目标是使用瑞士 ADME (http://www.swissadme.ch/index.php) 来评估个体 ADME 行为并解释结果。