该项目部分资金由联邦公路管理局研究与发展办公室提供。作者对此表示感谢。作者还要感谢联邦公路管理局的 James Cooper
可控的方式。[6] 然而,自上而下的技术不可扩展,且大多数技术耗时耗力,从而阻碍了它们的潜在应用。特别是手性微结构可以通过调制飞秒激光焦点的单次曝光快速制造。[7] 其几何形状严格由可实现的结构化焦点决定,并且得到的表面质量相当差。相反,自下而上的方法提供了一种经济高效且可扩展的替代方法,通过由不同材料(如共聚物、[8] 肽、[9] 纳米粒子 [10] 和 DNA 四面体 [11] 制成的亚基的顺序自组装来创建分层纳米结构。不幸的是,由于自发自组装过程的固有特点,对几何形状、空间排列、规律性和螺旋性的精确控制非常困难。自上而下和自下而上相结合的混合制造技术的最新进展有望克服上述一些限制。[12] 特别是,通过介导弹性毛细管相互作用的毛细管力驱动自组装引起了人们的极大兴趣,因为它具有简单性和可扩展性的独特优势,[13] 并且在一定程度上已用于混合制造策略。基于光刻的技术已经实现中尺度刷毛的制造,并且通过利用弹性毛细管聚结已经得到高度有序的螺旋簇。[14] 然而,由于圆形原纤维具有旋转对称性,因此单个簇所实现的手性是随机的。虽然可以通过将横截面渲染为矩形来获得特定的手性重排,但手性的可调性仍然有限。利用电子束光刻技术实现10纳米级的纳米柱,然后通过毛细管力诱导的纳米内聚力进行自组装。[15] 利用多光束干涉光刻技术,结合溶液蒸发过程中的毛细管力,制备并组装大面积图案化微柱。[16] 我们之前的研究表明,可以利用毛细管力来驱动直柱生成具有高度可控性的分级微结构。[17] 然而,由于毛细管力在微尺度上很难利用,它们都无法实现可控的手性结构。因此,开发一种简便、可控、高效的功能手性结构制备方法是十分有必要的。
严格回顾了各种吸附剂在批量吸附和柱吸附中去除重金属的性能。介绍了吸附的基本思想,包括化学吸附和物理吸附及其组分、吸附剂和吸附质。研究了使用各种吸附质,即重金属(Cr、Cd、Pb、Ni 和 Cu)的吸附研究。深入讨论了一系列用于去除重金属的批量吸附和柱吸附的各种设计实验。参考了批量吸附和柱吸附研究的区别。本文深入解释了批量吸附和柱吸附中不同参数的澄清。完整介绍了柱吸附的各种参数,即入口离子浓度、流速、床高,以及批量吸附的各种参数,即接触时间、pH、温度和吸附剂剂量。很好地描述了两种吸附的等温线模型和动力学模型。此外,还完整观察到了设计柱吸附的突破曲线。最后,揭示了两种吸附在现实世界中的适应性困难。关键词:柱吸附;批量吸附;吸附剂;版权所有 © 2020 PENERBIT AKADEMIA BARU - 保留所有权利
摘要:霉酚酸酯 (MMF) 是一种免疫抑制药物,获批用于预防接受实体器官移植的患者的移植排斥反应,并进一步用于治疗各种自身免疫性疾病。MMF 表现出显著的药代动力学个体间和个体内差异,需要采用个性化治疗方法来实现最佳治疗效果,同时降低不良反应风险。本综述的目的是总结影响 MMF 及其活性代谢物霉酚酸药代动力学的因素,以推导出个性化治疗策略的建议。根据四个药代动力学阶段分析了假定的预测因素,为临床实施的 MMF 剂量优化提供了工具和目标。
人工智能 (AI) 的应用能够极大地优化我们的生活,而且很明显,随着时间的推移,这种优化只会越来越明显。从很多方面来看,这都是非常有前景的,但人工智能在我们社会中的表现形式也引发了许多关于非人性化的担忧。人们通常认识到,人工智能系统会隐性地发挥社会权力关系——无论是有意还是无意,就像偏见的情况一样——因此,只要我们改进模型,发现这种隐藏的故意压迫领域,危险就会消失。然而,这些观点忽略了这样一种可能性,即正是因为人工智能能够完美地实现有利的目标,才可能产生有害的后果。这个不良副作用的问题,与我们为人工智能设定的目标完全无关,是通过“非故意非人性化”的概念来探讨的。为了阐明这一现象,本文分为两部分。第一部分将确定天真的人工智能使用如何成为这一问题的典型案例。在第二部分中,我们将论证这些问题以双重方式出现;人工智能不仅有可能对“使用者”造成伤害,而且也有可能对用户造成伤害。有了这个概念模型,我们才有可能意识到我们接受人工智能解决方案的反面。
简明英语摘要背景和研究目标类风湿性关节炎是一种常见疾病,影响英国每 100 名成年人中的 1 名。当免疫系统错误地攻击关节时,就会发生这种情况,导致疼痛、僵硬、疲劳,并可能导致关节损伤和残疾。现代关节炎药物可帮助超过三分之一的患者实现缓解,但这些药物可能有副作用,需要定期进行血液检查。这项研究旨在了解一些患者如何停止服用关节炎药物而不会出现症状,即所谓的“无药物缓解”,以及这会如何影响他们的感受和未来的健康。
摘要全球糖尿病和疟疾的负担需要对药物开发的创新方法,而植物来源的化合物则作为有前途的候选者。本综述研究了基于植物性的生物活性化合物对开发抗糖尿病和抗疟疾疗法的潜力。这些化合物的作用机制,包括它们调节葡萄糖代谢和战斗疟疾寄生虫的能力。关键问题,例如生物多样性损失,有限的资金和监管障碍,强调了跨学科研究和协作的需求。未来的方向包括将传统医学与现代药理结合,增强生物技术方法以及建立可持续的药物开发管道。这些努力强调了植物来源化合物在应对全球健康挑战方面的变革潜力。关键词:植物来源的化合物,抗糖尿病药,抗疟药,生物活性化合物,药物发现。
多药革兰氏阴性细菌感染在全球范围内引起明显的发病率和死亡率。这些病原体很容易获得抗菌耐药性(AMR),进一步强调了它们的临床意义。第三代耐甲状腺孢菌素和耐碳苯甲状腺菌(例如,大肠杆菌和克雷伯斯氏菌SPP),抗多药的铜绿假单胞菌,铜绿假单胞菌,以及耐碳酸苯甲酸杆菌的抗碳酸盐症,并已识别为识别的问题,并且已经识别出了问题。在响应中,已经开发了几种旨在快速检测AMR的新诊断技术,包括生化,分子,基因组和蛋白质组学技术。过去十年还看到了多种抗生素的许可,这些抗生素改变了这些具有挑战性的感染的治疗景观。
规定了抗抑郁药,以帮助治疗心理健康问题,例如抑郁症和焦虑症状。您可能会惊讶地发现抗抑郁药是澳大利亚最常见的药物之一。在澳大利亚每天2,3中,大约有七分之一的成年人中有1名和十个青少年服用抗抑郁药。这些药物的靶向与情绪低落有关的大脑中的神经递质(化学信使),例如5-羟色胺,去甲肾上腺素和多巴胺4。常见的抗抑郁药是“选择性5-羟色胺再摄取抑制剂”(SSRIS),也以其品牌名称而闻名,例如Lexapro,Cipramil和Prozac。SSRIS通过从神经细胞之间的空间中阻断5-羟色胺的回收来增加大脑中5-羟色胺的水平(请参见相反的图像)。这有助于5-羟色胺保持更长的时间,并有助于改善情绪5。
RNS 可能会使用您的 IP 地址来确认是否遵守条款和条件,分析您如何使用本通讯中包含的信息,并在匿名的基础上与他人分享此类分析,作为我们商业服务的一部分。有关 RNS 和伦敦证券交易所如何使用您提供给我们的个人数据的更多信息,请参阅我们的隐私政策。END PFUEADKPFLNDEFA